MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgruhgr Structured version   Visualization version   GIF version

Theorem upgruhgr 25997
Description: An undirected pseudograph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 10-Oct-2020.)
Assertion
Ref Expression
upgruhgr (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph )

Proof of Theorem upgruhgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2622 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2upgrf 25981 . . 3 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
4 ssrab2 3687 . . 3 {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})
5 fss 6056 . . 3 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ∧ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
63, 4, 5sylancl 694 . 2 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
71, 2isuhgr 25955 . 2 (𝐺 ∈ UPGraph → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})))
86, 7mpbird 247 1 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1990  {crab 2916  cdif 3571  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   class class class wbr 4653  dom cdm 5114  wf 5884  cfv 5888  cle 10075  2c2 11070  #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   UHGraph cuhgr 25951   UPGraph cupgr 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-uhgr 25953  df-upgr 25977
This theorem is referenced by:  umgruhgr  25999  upgrle2  26000  edglnl  26038  numedglnl  26039  usgruhgr  26078  subupgr  26179  upgrspan  26185  upgrreslem  26196  upgrres  26198  finsumvtxdg2ssteplem1  26441  finsumvtxdg2size  26446  upgrewlkle2  26502  upgredginwlk  26532  wlkiswwlks1  26753  wlkiswwlksupgr2  26763  eulerpathpr  27100  eulercrct  27102
  Copyright terms: Public domain W3C validator