MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrunop Structured version   Visualization version   GIF version

Theorem upgrunop 26014
Description: The union of two pseudographs (with the same vertex set): If 𝑉, 𝐸 and 𝑉, 𝐹 are pseudographs, then 𝑉, 𝐸𝐹 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
upgrun.g (𝜑𝐺 ∈ UPGraph )
upgrun.h (𝜑𝐻 ∈ UPGraph )
upgrun.e 𝐸 = (iEdg‘𝐺)
upgrun.f 𝐹 = (iEdg‘𝐻)
upgrun.vg 𝑉 = (Vtx‘𝐺)
upgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
upgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
upgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UPGraph )

Proof of Theorem upgrunop
StepHypRef Expression
1 upgrun.g . 2 (𝜑𝐺 ∈ UPGraph )
2 upgrun.h . 2 (𝜑𝐻 ∈ UPGraph )
3 upgrun.e . 2 𝐸 = (iEdg‘𝐺)
4 upgrun.f . 2 𝐹 = (iEdg‘𝐻)
5 upgrun.vg . 2 𝑉 = (Vtx‘𝐺)
6 upgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
7 upgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
8 opex 4932 . . 3 𝑉, (𝐸𝐹)⟩ ∈ V
98a1i 11 . 2 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ V)
10 fvex 6201 . . . . 5 (Vtx‘𝐺) ∈ V
115, 10eqeltri 2697 . . . 4 𝑉 ∈ V
12 fvex 6201 . . . . . 6 (iEdg‘𝐺) ∈ V
133, 12eqeltri 2697 . . . . 5 𝐸 ∈ V
14 fvex 6201 . . . . . 6 (iEdg‘𝐻) ∈ V
154, 14eqeltri 2697 . . . . 5 𝐹 ∈ V
1613, 15unex 6956 . . . 4 (𝐸𝐹) ∈ V
1711, 16pm3.2i 471 . . 3 (𝑉 ∈ V ∧ (𝐸𝐹) ∈ V)
18 opvtxfv 25884 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
1917, 18mp1i 13 . 2 (𝜑 → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
20 opiedgfv 25887 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
2117, 20mp1i 13 . 2 (𝜑 → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
221, 2, 3, 4, 5, 6, 7, 9, 19, 21upgrun 26013 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UPGraph )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  cin 3573  c0 3915  cop 4183  dom cdm 5114  cfv 5888  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-1st 7168  df-2nd 7169  df-vtx 25876  df-iedg 25877  df-upgr 25977
This theorem is referenced by:  uspgrunop  26081
  Copyright terms: Public domain W3C validator