MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrloopedg Structured version   Visualization version   GIF version

Theorem uspgrloopedg 26414
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 26141) is a singleton of a singleton. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
uspgrloopvtx.g 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
Assertion
Ref Expression
uspgrloopedg ((𝑉𝑊𝐴𝑋) → (Edg‘𝐺) = {{𝑁}})

Proof of Theorem uspgrloopedg
StepHypRef Expression
1 uspgrloopvtx.g . . . 4 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
21fveq2i 6194 . . 3 (Edg‘𝐺) = (Edg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩)
3 snex 4908 . . . . 5 {⟨𝐴, {𝑁}⟩} ∈ V
43a1i 11 . . . 4 (𝐴𝑋 → {⟨𝐴, {𝑁}⟩} ∈ V)
5 edgopval 25944 . . . 4 ((𝑉𝑊 ∧ {⟨𝐴, {𝑁}⟩} ∈ V) → (Edg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = ran {⟨𝐴, {𝑁}⟩})
64, 5sylan2 491 . . 3 ((𝑉𝑊𝐴𝑋) → (Edg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = ran {⟨𝐴, {𝑁}⟩})
72, 6syl5eq 2668 . 2 ((𝑉𝑊𝐴𝑋) → (Edg‘𝐺) = ran {⟨𝐴, {𝑁}⟩})
8 rnsnopg 5614 . . 3 (𝐴𝑋 → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}})
98adantl 482 . 2 ((𝑉𝑊𝐴𝑋) → ran {⟨𝐴, {𝑁}⟩} = {{𝑁}})
107, 9eqtrd 2656 1 ((𝑉𝑊𝐴𝑋) → (Edg‘𝐺) = {{𝑁}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177  cop 4183  ran crn 5115  cfv 5888  Edgcedg 25939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-2nd 7169  df-iedg 25877  df-edg 25940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator