MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrloopvtx Structured version   Visualization version   GIF version

Theorem uspgrloopvtx 26411
Description: The set of vertices in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 26141). (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
uspgrloopvtx.g 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
Assertion
Ref Expression
uspgrloopvtx (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)

Proof of Theorem uspgrloopvtx
StepHypRef Expression
1 uspgrloopvtx.g . . 3 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
21fveq2i 6194 . 2 (Vtx‘𝐺) = (Vtx‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩)
3 snex 4908 . . 3 {⟨𝐴, {𝑁}⟩} ∈ V
4 opvtxfv 25884 . . 3 ((𝑉𝑊 ∧ {⟨𝐴, {𝑁}⟩} ∈ V) → (Vtx‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = 𝑉)
53, 4mpan2 707 . 2 (𝑉𝑊 → (Vtx‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = 𝑉)
62, 5syl5eq 2668 1 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177  cop 4183  cfv 5888  Vtxcvtx 25874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-vtx 25876
This theorem is referenced by:  uspgrloopvtxel  26412  uspgrloopnb0  26415  uspgrloopvd2  26416
  Copyright terms: Public domain W3C validator