| Step | Hyp | Ref
| Expression |
| 1 | | simplll 798 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 2 | | simplr 792 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) → 𝑣 ∈ 𝑈) |
| 3 | | ustex2sym 22020 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣)) |
| 4 | 1, 2, 3 | syl2anc 693 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣)) |
| 5 | | simprl 794 |
. . . . . 6
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣)) → ◡𝑤 = 𝑤) |
| 6 | | simp-5l 808 |
. . . . . . . . 9
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣)) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 7 | | simplr 792 |
. . . . . . . . 9
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣)) → 𝑤 ∈ 𝑈) |
| 8 | | ustssco 22018 |
. . . . . . . . 9
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈) → 𝑤 ⊆ (𝑤 ∘ 𝑤)) |
| 9 | 6, 7, 8 | syl2anc 693 |
. . . . . . . 8
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣)) → 𝑤 ⊆ (𝑤 ∘ 𝑤)) |
| 10 | | simprr 796 |
. . . . . . . 8
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣)) → (𝑤 ∘ 𝑤) ⊆ 𝑣) |
| 11 | | coss2 5278 |
. . . . . . . . . 10
⊢ ((𝑤 ∘ 𝑤) ⊆ 𝑣 → (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ (𝑤 ∘ 𝑣)) |
| 12 | 11 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑤 ⊆ (𝑤 ∘ 𝑤) ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣) → (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ (𝑤 ∘ 𝑣)) |
| 13 | | sstr 3611 |
. . . . . . . . . 10
⊢ ((𝑤 ⊆ (𝑤 ∘ 𝑤) ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣) → 𝑤 ⊆ 𝑣) |
| 14 | | coss1 5277 |
. . . . . . . . . 10
⊢ (𝑤 ⊆ 𝑣 → (𝑤 ∘ 𝑣) ⊆ (𝑣 ∘ 𝑣)) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . 9
⊢ ((𝑤 ⊆ (𝑤 ∘ 𝑤) ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣) → (𝑤 ∘ 𝑣) ⊆ (𝑣 ∘ 𝑣)) |
| 16 | 12, 15 | sstrd 3613 |
. . . . . . . 8
⊢ ((𝑤 ⊆ (𝑤 ∘ 𝑤) ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣) → (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ (𝑣 ∘ 𝑣)) |
| 17 | 9, 10, 16 | syl2anc 693 |
. . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣)) → (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ (𝑣 ∘ 𝑣)) |
| 18 | | simpllr 799 |
. . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣)) → (𝑣 ∘ 𝑣) ⊆ 𝑉) |
| 19 | 17, 18 | sstrd 3613 |
. . . . . 6
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣)) → (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑉) |
| 20 | 5, 19 | jca 554 |
. . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣)) → (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑉)) |
| 21 | 20 | ex 450 |
. . . 4
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) → ((◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣) → (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑉))) |
| 22 | 21 | reximdva 3017 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) → (∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑣) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑉))) |
| 23 | 4, 22 | mpd 15 |
. 2
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑉)) |
| 24 | | ustexhalf 22014 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑣 ∈ 𝑈 (𝑣 ∘ 𝑣) ⊆ 𝑉) |
| 25 | 23, 24 | r19.29a 3078 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑉)) |