MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustex3sym Structured version   Visualization version   Unicode version

Theorem ustex3sym 22021
Description: In an uniform structure, for any entourage  V, there exists a symmetrical entourage smaller than a third of  V. (Contributed by Thierry Arnoux, 16-Jan-2018.)
Assertion
Ref Expression
ustex3sym  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  E. w  e.  U  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  V )
)
Distinct variable groups:    w, U    w, V    w, X

Proof of Theorem ustex3sym
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 simplll 798 . . . 4  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U
)  /\  v  e.  U )  /\  (
v  o.  v ) 
C_  V )  ->  U  e.  (UnifOn `  X
) )
2 simplr 792 . . . 4  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U
)  /\  v  e.  U )  /\  (
v  o.  v ) 
C_  V )  -> 
v  e.  U )
3 ustex2sym 22020 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  v  e.  U )  ->  E. w  e.  U  ( `' w  =  w  /\  ( w  o.  w
)  C_  v )
)
41, 2, 3syl2anc 693 . . 3  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U
)  /\  v  e.  U )  /\  (
v  o.  v ) 
C_  V )  ->  E. w  e.  U  ( `' w  =  w  /\  ( w  o.  w
)  C_  v )
)
5 simprl 794 . . . . . 6  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  /\  v  e.  U )  /\  (
v  o.  v ) 
C_  V )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  w )  C_  v ) )  ->  `' w  =  w
)
6 simp-5l 808 . . . . . . . . 9  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  /\  v  e.  U )  /\  (
v  o.  v ) 
C_  V )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  w )  C_  v ) )  ->  U  e.  (UnifOn `  X
) )
7 simplr 792 . . . . . . . . 9  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  /\  v  e.  U )  /\  (
v  o.  v ) 
C_  V )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  w )  C_  v ) )  ->  w  e.  U )
8 ustssco 22018 . . . . . . . . 9  |-  ( ( U  e.  (UnifOn `  X )  /\  w  e.  U )  ->  w  C_  ( w  o.  w
) )
96, 7, 8syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  /\  v  e.  U )  /\  (
v  o.  v ) 
C_  V )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  w )  C_  v ) )  ->  w  C_  ( w  o.  w ) )
10 simprr 796 . . . . . . . 8  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  /\  v  e.  U )  /\  (
v  o.  v ) 
C_  V )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  w )  C_  v ) )  -> 
( w  o.  w
)  C_  v )
11 coss2 5278 . . . . . . . . . 10  |-  ( ( w  o.  w ) 
C_  v  ->  (
w  o.  ( w  o.  w ) ) 
C_  ( w  o.  v ) )
1211adantl 482 . . . . . . . . 9  |-  ( ( w  C_  ( w  o.  w )  /\  (
w  o.  w ) 
C_  v )  -> 
( w  o.  (
w  o.  w ) )  C_  ( w  o.  v ) )
13 sstr 3611 . . . . . . . . . 10  |-  ( ( w  C_  ( w  o.  w )  /\  (
w  o.  w ) 
C_  v )  ->  w  C_  v )
14 coss1 5277 . . . . . . . . . 10  |-  ( w 
C_  v  ->  (
w  o.  v ) 
C_  ( v  o.  v ) )
1513, 14syl 17 . . . . . . . . 9  |-  ( ( w  C_  ( w  o.  w )  /\  (
w  o.  w ) 
C_  v )  -> 
( w  o.  v
)  C_  ( v  o.  v ) )
1612, 15sstrd 3613 . . . . . . . 8  |-  ( ( w  C_  ( w  o.  w )  /\  (
w  o.  w ) 
C_  v )  -> 
( w  o.  (
w  o.  w ) )  C_  ( v  o.  v ) )
179, 10, 16syl2anc 693 . . . . . . 7  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  /\  v  e.  U )  /\  (
v  o.  v ) 
C_  V )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  w )  C_  v ) )  -> 
( w  o.  (
w  o.  w ) )  C_  ( v  o.  v ) )
18 simpllr 799 . . . . . . 7  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  /\  v  e.  U )  /\  (
v  o.  v ) 
C_  V )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  w )  C_  v ) )  -> 
( v  o.  v
)  C_  V )
1917, 18sstrd 3613 . . . . . 6  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  /\  v  e.  U )  /\  (
v  o.  v ) 
C_  V )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  w )  C_  v ) )  -> 
( w  o.  (
w  o.  w ) )  C_  V )
205, 19jca 554 . . . . 5  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  /\  v  e.  U )  /\  (
v  o.  v ) 
C_  V )  /\  w  e.  U )  /\  ( `' w  =  w  /\  ( w  o.  w )  C_  v ) )  -> 
( `' w  =  w  /\  ( w  o.  ( w  o.  w ) )  C_  V ) )
2120ex 450 . . . 4  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  V  e.  U )  /\  v  e.  U )  /\  (
v  o.  v ) 
C_  V )  /\  w  e.  U )  ->  ( ( `' w  =  w  /\  (
w  o.  w ) 
C_  v )  -> 
( `' w  =  w  /\  ( w  o.  ( w  o.  w ) )  C_  V ) ) )
2221reximdva 3017 . . 3  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U
)  /\  v  e.  U )  /\  (
v  o.  v ) 
C_  V )  -> 
( E. w  e.  U  ( `' w  =  w  /\  (
w  o.  w ) 
C_  v )  ->  E. w  e.  U  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  V )
) )
234, 22mpd 15 . 2  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  V  e.  U
)  /\  v  e.  U )  /\  (
v  o.  v ) 
C_  V )  ->  E. w  e.  U  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  V )
)
24 ustexhalf 22014 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  E. v  e.  U  ( v  o.  v )  C_  V
)
2523, 24r19.29a 3078 1  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U )  ->  E. w  e.  U  ( `' w  =  w  /\  ( w  o.  (
w  o.  w ) )  C_  V )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   `'ccnv 5113    o. ccom 5118   ` cfv 5888  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ust 22004
This theorem is referenced by:  utopreg  22056
  Copyright terms: Public domain W3C validator