![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustneism | Structured version Visualization version GIF version |
Description: For a point 𝐴 in 𝑋, (𝑉 “ {𝐴}) is small enough in (𝑉 ∘ ◡𝑉). This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
Ref | Expression |
---|---|
ustneism | ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉 ∘ ◡𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnzg 4308 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → {𝐴} ≠ ∅) | |
2 | 1 | adantl 482 | . . 3 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ≠ ∅) |
3 | xpco 5675 | . . 3 ⊢ ({𝐴} ≠ ∅ → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) = ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴}))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) = ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴}))) |
5 | cnvxp 5551 | . . . . 5 ⊢ ◡({𝐴} × (𝑉 “ {𝐴})) = ((𝑉 “ {𝐴}) × {𝐴}) | |
6 | ressn 5671 | . . . . . . 7 ⊢ (𝑉 ↾ {𝐴}) = ({𝐴} × (𝑉 “ {𝐴})) | |
7 | 6 | cnveqi 5297 | . . . . . 6 ⊢ ◡(𝑉 ↾ {𝐴}) = ◡({𝐴} × (𝑉 “ {𝐴})) |
8 | resss 5422 | . . . . . . 7 ⊢ (𝑉 ↾ {𝐴}) ⊆ 𝑉 | |
9 | cnvss 5294 | . . . . . . 7 ⊢ ((𝑉 ↾ {𝐴}) ⊆ 𝑉 → ◡(𝑉 ↾ {𝐴}) ⊆ ◡𝑉) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ ◡(𝑉 ↾ {𝐴}) ⊆ ◡𝑉 |
11 | 7, 10 | eqsstr3i 3636 | . . . . 5 ⊢ ◡({𝐴} × (𝑉 “ {𝐴})) ⊆ ◡𝑉 |
12 | 5, 11 | eqsstr3i 3636 | . . . 4 ⊢ ((𝑉 “ {𝐴}) × {𝐴}) ⊆ ◡𝑉 |
13 | coss2 5278 | . . . 4 ⊢ (((𝑉 “ {𝐴}) × {𝐴}) ⊆ ◡𝑉 → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (({𝐴} × (𝑉 “ {𝐴})) ∘ ◡𝑉)) | |
14 | 12, 13 | mp1i 13 | . . 3 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (({𝐴} × (𝑉 “ {𝐴})) ∘ ◡𝑉)) |
15 | 6, 8 | eqsstr3i 3636 | . . . 4 ⊢ ({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉 |
16 | coss1 5277 | . . . 4 ⊢ (({𝐴} × (𝑉 “ {𝐴})) ⊆ 𝑉 → (({𝐴} × (𝑉 “ {𝐴})) ∘ ◡𝑉) ⊆ (𝑉 ∘ ◡𝑉)) | |
17 | 15, 16 | mp1i 13 | . . 3 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ◡𝑉) ⊆ (𝑉 ∘ ◡𝑉)) |
18 | 14, 17 | sstrd 3613 | . 2 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → (({𝐴} × (𝑉 “ {𝐴})) ∘ ((𝑉 “ {𝐴}) × {𝐴})) ⊆ (𝑉 ∘ ◡𝑉)) |
19 | 4, 18 | eqsstr3d 3640 | 1 ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉 ∘ ◡𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ⊆ wss 3574 ∅c0 3915 {csn 4177 × cxp 5112 ◡ccnv 5113 ↾ cres 5116 “ cima 5117 ∘ ccom 5118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 |
This theorem is referenced by: neipcfilu 22100 |
Copyright terms: Public domain | W3C validator |