MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustneism Structured version   Visualization version   Unicode version

Theorem ustneism 22027
Description: For a point  A in  X,  ( V " { A } ) is small enough in  ( V  o.  `' V ). This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017.)
Assertion
Ref Expression
ustneism  |-  ( ( V  C_  ( X  X.  X )  /\  A  e.  X )  ->  (
( V " { A } )  X.  ( V " { A }
) )  C_  ( V  o.  `' V
) )

Proof of Theorem ustneism
StepHypRef Expression
1 snnzg 4308 . . . 4  |-  ( A  e.  X  ->  { A }  =/=  (/) )
21adantl 482 . . 3  |-  ( ( V  C_  ( X  X.  X )  /\  A  e.  X )  ->  { A }  =/=  (/) )
3 xpco 5675 . . 3  |-  ( { A }  =/=  (/)  ->  (
( { A }  X.  ( V " { A } ) )  o.  ( ( V " { A } )  X. 
{ A } ) )  =  ( ( V " { A } )  X.  ( V " { A }
) ) )
42, 3syl 17 . 2  |-  ( ( V  C_  ( X  X.  X )  /\  A  e.  X )  ->  (
( { A }  X.  ( V " { A } ) )  o.  ( ( V " { A } )  X. 
{ A } ) )  =  ( ( V " { A } )  X.  ( V " { A }
) ) )
5 cnvxp 5551 . . . . 5  |-  `' ( { A }  X.  ( V " { A } ) )  =  ( ( V " { A } )  X. 
{ A } )
6 ressn 5671 . . . . . . 7  |-  ( V  |`  { A } )  =  ( { A }  X.  ( V " { A } ) )
76cnveqi 5297 . . . . . 6  |-  `' ( V  |`  { A } )  =  `' ( { A }  X.  ( V " { A } ) )
8 resss 5422 . . . . . . 7  |-  ( V  |`  { A } ) 
C_  V
9 cnvss 5294 . . . . . . 7  |-  ( ( V  |`  { A } )  C_  V  ->  `' ( V  |`  { A } )  C_  `' V )
108, 9ax-mp 5 . . . . . 6  |-  `' ( V  |`  { A } )  C_  `' V
117, 10eqsstr3i 3636 . . . . 5  |-  `' ( { A }  X.  ( V " { A } ) )  C_  `' V
125, 11eqsstr3i 3636 . . . 4  |-  ( ( V " { A } )  X.  { A } )  C_  `' V
13 coss2 5278 . . . 4  |-  ( ( ( V " { A } )  X.  { A } )  C_  `' V  ->  ( ( { A }  X.  ( V " { A }
) )  o.  (
( V " { A } )  X.  { A } ) )  C_  ( ( { A }  X.  ( V " { A } ) )  o.  `' V ) )
1412, 13mp1i 13 . . 3  |-  ( ( V  C_  ( X  X.  X )  /\  A  e.  X )  ->  (
( { A }  X.  ( V " { A } ) )  o.  ( ( V " { A } )  X. 
{ A } ) )  C_  ( ( { A }  X.  ( V " { A }
) )  o.  `' V ) )
156, 8eqsstr3i 3636 . . . 4  |-  ( { A }  X.  ( V " { A }
) )  C_  V
16 coss1 5277 . . . 4  |-  ( ( { A }  X.  ( V " { A } ) )  C_  V  ->  ( ( { A }  X.  ( V " { A }
) )  o.  `' V )  C_  ( V  o.  `' V
) )
1715, 16mp1i 13 . . 3  |-  ( ( V  C_  ( X  X.  X )  /\  A  e.  X )  ->  (
( { A }  X.  ( V " { A } ) )  o.  `' V )  C_  ( V  o.  `' V
) )
1814, 17sstrd 3613 . 2  |-  ( ( V  C_  ( X  X.  X )  /\  A  e.  X )  ->  (
( { A }  X.  ( V " { A } ) )  o.  ( ( V " { A } )  X. 
{ A } ) )  C_  ( V  o.  `' V ) )
194, 18eqsstr3d 3640 1  |-  ( ( V  C_  ( X  X.  X )  /\  A  e.  X )  ->  (
( V " { A } )  X.  ( V " { A }
) )  C_  ( V  o.  `' V
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915   {csn 4177    X. cxp 5112   `'ccnv 5113    |` cres 5116   "cima 5117    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  neipcfilu  22100
  Copyright terms: Public domain W3C validator