MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcass Structured version   Visualization version   GIF version

Theorem vcass 27422
Description: Associative law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vcass ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))

Proof of Theorem vcass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vciOLD.1 . . . . . 6 𝐺 = (1st𝑊)
2 vciOLD.2 . . . . . 6 𝑆 = (2nd𝑊)
3 vciOLD.3 . . . . . 6 𝑋 = ran 𝐺
41, 2, 3vciOLD 27416 . . . . 5 (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5 simpr 477 . . . . . . . . . . 11 ((((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) → ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
65ralimi 2952 . . . . . . . . . 10 (∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) → ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
76adantl 482 . . . . . . . . 9 ((∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
87ralimi 2952 . . . . . . . 8 (∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
98adantl 482 . . . . . . 7 (((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
109ralimi 2952 . . . . . 6 (∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
11103ad2ant3 1084 . . . . 5 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
124, 11syl 17 . . . 4 (𝑊 ∈ CVecOLD → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
13 oveq2 6658 . . . . . 6 (𝑥 = 𝐶 → ((𝑦 · 𝑧)𝑆𝑥) = ((𝑦 · 𝑧)𝑆𝐶))
14 oveq2 6658 . . . . . . 7 (𝑥 = 𝐶 → (𝑧𝑆𝑥) = (𝑧𝑆𝐶))
1514oveq2d 6666 . . . . . 6 (𝑥 = 𝐶 → (𝑦𝑆(𝑧𝑆𝑥)) = (𝑦𝑆(𝑧𝑆𝐶)))
1613, 15eqeq12d 2637 . . . . 5 (𝑥 = 𝐶 → (((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)) ↔ ((𝑦 · 𝑧)𝑆𝐶) = (𝑦𝑆(𝑧𝑆𝐶))))
17 oveq1 6657 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 · 𝑧) = (𝐴 · 𝑧))
1817oveq1d 6665 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 · 𝑧)𝑆𝐶) = ((𝐴 · 𝑧)𝑆𝐶))
19 oveq1 6657 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑆(𝑧𝑆𝐶)) = (𝐴𝑆(𝑧𝑆𝐶)))
2018, 19eqeq12d 2637 . . . . 5 (𝑦 = 𝐴 → (((𝑦 · 𝑧)𝑆𝐶) = (𝑦𝑆(𝑧𝑆𝐶)) ↔ ((𝐴 · 𝑧)𝑆𝐶) = (𝐴𝑆(𝑧𝑆𝐶))))
21 oveq2 6658 . . . . . . 7 (𝑧 = 𝐵 → (𝐴 · 𝑧) = (𝐴 · 𝐵))
2221oveq1d 6665 . . . . . 6 (𝑧 = 𝐵 → ((𝐴 · 𝑧)𝑆𝐶) = ((𝐴 · 𝐵)𝑆𝐶))
23 oveq1 6657 . . . . . . 7 (𝑧 = 𝐵 → (𝑧𝑆𝐶) = (𝐵𝑆𝐶))
2423oveq2d 6666 . . . . . 6 (𝑧 = 𝐵 → (𝐴𝑆(𝑧𝑆𝐶)) = (𝐴𝑆(𝐵𝑆𝐶)))
2522, 24eqeq12d 2637 . . . . 5 (𝑧 = 𝐵 → (((𝐴 · 𝑧)𝑆𝐶) = (𝐴𝑆(𝑧𝑆𝐶)) ↔ ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))))
2616, 20, 25rspc3v 3325 . . . 4 ((𝐶𝑋𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))))
2712, 26syl5 34 . . 3 ((𝐶𝑋𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑊 ∈ CVecOLD → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))))
28273coml 1272 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋) → (𝑊 ∈ CVecOLD → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))))
2928impcom 446 1 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   × cxp 5112  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  cc 9934  1c1 9937   + caddc 9939   · cmul 9941  AbelOpcablo 27398  CVecOLDcvc 27413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-1st 7168  df-2nd 7169  df-vc 27414
This theorem is referenced by:  vcz  27430  nvsass  27483
  Copyright terms: Public domain W3C validator