![]() |
Metamath
Proof Explorer Theorem List (p. 275 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ablogrpo 27401 | An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | ||
Theorem | ablocom 27402 | An Abelian group operation is commutative. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) | ||
Theorem | ablo32 27403 | Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵)) | ||
Theorem | ablo4 27404 | Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) | ||
Theorem | isabloi 27405* | Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 ∈ GrpOp & ⊢ dom 𝐺 = (𝑋 × 𝑋) & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) ⇒ ⊢ 𝐺 ∈ AbelOp | ||
Theorem | ablomuldiv 27406 | Law for group multiplication and division. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵)) | ||
Theorem | ablodivdiv 27407 | Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = ((𝐴𝐷𝐵)𝐺𝐶)) | ||
Theorem | ablodivdiv4 27408 | Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = (𝐴𝐷(𝐵𝐺𝐶))) | ||
Theorem | ablodiv32 27409 | Swap the second and third terms in a double division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐷𝐵)) | ||
Theorem | ablonnncan 27410 | Cancellation law for group division. (nnncan 10316 analog.) (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷(𝐵𝐷𝐶))𝐷𝐶) = (𝐴𝐷𝐵)) | ||
Theorem | ablonncan 27411 | Cancellation law for group division. (nncan 10310 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵) | ||
Theorem | ablonnncan1 27412 | Cancellation law for group division. (nnncan1 10317 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷(𝐴𝐷𝐶)) = (𝐶𝐷𝐵)) | ||
Syntax | cvc 27413 | Extend class notation with the class of all complex vector spaces. |
class CVecOLD | ||
Definition | df-vc 27414* | Define the class of all complex vector spaces. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
⊢ CVecOLD = {〈𝑔, 𝑠〉 ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} | ||
Theorem | vcrel 27415 | The class of all complex vector spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
⊢ Rel CVecOLD | ||
Theorem | vciOLD 27416* | Obsolete version of cvsi 22930 as of 21-Sep-2021. The properties of a complex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. The variable 𝑊 was chosen because V is already used for the universal class. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) | ||
Theorem | vcsm 27417 | Functionality of th scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑊 ∈ CVecOLD → 𝑆:(ℂ × 𝑋)⟶𝑋) | ||
Theorem | vccl 27418 | Closure of the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐴𝑆𝐵) ∈ 𝑋) | ||
Theorem | vcidOLD 27419 | Identity element for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) Obsolete as of 21-Sep-2021. Use clmvs1 22893 together with cvsclm 22926 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) | ||
Theorem | vcdi 27420 | Distributive law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))) | ||
Theorem | vcdir 27421 | Distributive law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶))) | ||
Theorem | vcass 27422 | Associative law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))) | ||
Theorem | vc2OLD 27423 | A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007.) Obsolete as of 21-Sep-2021. Use clmvs2 22894 together with cvsclm 22926 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) | ||
Theorem | vcablo 27424 | Vector addition is an Abelian group operation. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) ⇒ ⊢ (𝑊 ∈ CVecOLD → 𝐺 ∈ AbelOp) | ||
Theorem | vcgrp 27425 | Vector addition is a group operation. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) ⇒ ⊢ (𝑊 ∈ CVecOLD → 𝐺 ∈ GrpOp) | ||
Theorem | vclcan 27426 | Left cancellation law for vector addition. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | vczcl 27427 | The zero vector is a vector. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋) | ||
Theorem | vc0rid 27428 | The zero vector is a right identity element. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) | ||
Theorem | vc0 27429 | Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) | ||
Theorem | vcz 27430 | Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) | ||
Theorem | vcm 27431 | Minus 1 times a vector is the underlying group's inverse element. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 25-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑀 = (inv‘𝐺) ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = (𝑀‘𝐴)) | ||
Theorem | isvclem 27432* | Lemma for isvcOLD 27434. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (〈𝐺, 𝑆〉 ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))) | ||
Theorem | vcex 27433 | The components of a complex vector space are sets. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | ||
Theorem | isvcOLD 27434* | The predicate "is a complex vector space." (Contributed by NM, 31-May-2008.) Obsolete as of 4-Oct-2021. Use iscvsp 22928 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) | ||
Theorem | isvciOLD 27435* | Properties that determine a complex vector space. (Contributed by NM, 5-Nov-2006.) Obsolete as of 4-Oct-2021. Use iscvsi 22929 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐺 ∈ AbelOp & ⊢ dom 𝐺 = (𝑋 × 𝑋) & ⊢ 𝑆:(ℂ × 𝑋)⟶𝑋 & ⊢ (𝑥 ∈ 𝑋 → (1𝑆𝑥) = 𝑥) & ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧))) & ⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥))) & ⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) & ⊢ 𝑊 = 〈𝐺, 𝑆〉 ⇒ ⊢ 𝑊 ∈ CVecOLD | ||
Theorem | cnaddabloOLD 27436 | Obsolete as of 23-Jan-2020. Use cnaddabl 18272 instead. Complex number addition is an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ + ∈ AbelOp | ||
Theorem | cnidOLD 27437 | Obsolete as of 23-Jan-2020. Use cnaddid 18273 instead. The group identity element of complex number addition is zero. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 0 = (GId‘ + ) | ||
Theorem | cncvcOLD 27438 | Obsolete version of cncvs 22945 as of 20-Sep-2021. The set of complex numbers is a complex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 〈 + , · 〉 ∈ CVecOLD | ||
Syntax | cnv 27439 | Extend class notation with the class of all normed complex vector spaces. |
class NrmCVec | ||
Syntax | cpv 27440 | Extend class notation with vector addition in a normed complex vector space. In the literature, the subscript "v" is omitted, but we need it to avoid ambiguity with complex number addition + caddc 9939. |
class +𝑣 | ||
Syntax | cba 27441 | Extend class notation with the base set of a normed complex vector space. (Note that BaseSet is capitalized because, once it is fixed for a particular vector space 𝑈, it is not a function, unlike e.g. normCV. This is our typical convention.) (New usage is discouraged.) |
class BaseSet | ||
Syntax | cns 27442 | Extend class notation with scalar multiplication in a normed complex vector space. In the literature scalar multiplication is usually indicated by juxtaposition, but we need an explicit symbol to prevent ambiguity. |
class ·𝑠OLD | ||
Syntax | cn0v 27443 | Extend class notation with zero vector in a normed complex vector space. |
class 0vec | ||
Syntax | cnsb 27444 | Extend class notation with vector subtraction in a normed complex vector space. |
class −𝑣 | ||
Syntax | cnmcv 27445 | Extend class notation with the norm function in a normed complex vector space. In the literature, the norm of 𝐴 is usually written "|| 𝐴 ||", but we use function notation to take advantage of our existing theorems about functions. |
class normCV | ||
Syntax | cims 27446 | Extend class notation with the class of the induced metrics on normed complex vector spaces. |
class IndMet | ||
Definition | df-nv 27447* | Define the class of all normed complex vector spaces. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.) |
⊢ NrmCVec = {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ (〈𝑔, 𝑠〉 ∈ CVecOLD ∧ 𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))))} | ||
Theorem | nvss 27448 | Structure of the class of all normed complex vectors spaces. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.) |
⊢ NrmCVec ⊆ (CVecOLD × V) | ||
Theorem | nvvcop 27449 | A normed complex vector space is a vector space. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.) |
⊢ (〈𝑊, 𝑁〉 ∈ NrmCVec → 𝑊 ∈ CVecOLD) | ||
Definition | df-va 27450 | Define vector addition on a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.) |
⊢ +𝑣 = (1st ∘ 1st ) | ||
Definition | df-ba 27451 | Define the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.) |
⊢ BaseSet = (𝑥 ∈ V ↦ ran ( +𝑣 ‘𝑥)) | ||
Definition | df-sm 27452 | Define scalar multiplication on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (New usage is discouraged.) |
⊢ ·𝑠OLD = (2nd ∘ 1st ) | ||
Definition | df-0v 27453 | Define the zero vector in a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (New usage is discouraged.) |
⊢ 0vec = (GId ∘ +𝑣 ) | ||
Definition | df-vs 27454 | Define vector subtraction on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ −𝑣 = ( /𝑔 ∘ +𝑣 ) | ||
Definition | df-nmcv 27455 | Define the norm function in a normed complex vector space. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.) |
⊢ normCV = 2nd | ||
Definition | df-ims 27456 | Define the induced metric on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
⊢ IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢))) | ||
Theorem | nvrel 27457 | The class of all normed complex vectors spaces is a relation. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.) |
⊢ Rel NrmCVec | ||
Theorem | vafval 27458 | Value of the function for the vector addition (group) operation on a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.) |
⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) | ||
Theorem | bafval 27459 | Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ 𝑋 = ran 𝐺 | ||
Theorem | smfval 27460 | Value of the function for the scalar multiplication operation on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) | ||
Theorem | 0vfval 27461 | Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝑍 = (GId‘𝐺)) | ||
Theorem | nmcvfval 27462 | Value of the norm function in a normed complex vector space. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ 𝑁 = (2nd ‘𝑈) | ||
Theorem | nvop2 27463 | A normed complex vector space is an ordered pair of a vector space and a norm operation. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑊 = (1st ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈𝑊, 𝑁〉) | ||
Theorem | nvvop 27464 | The vector space component of a normed complex vector space is an ordered pair of the underlying group and a scalar product. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑊 = (1st ‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑊 = 〈𝐺, 𝑆〉) | ||
Theorem | isnvlem 27465* | Lemma for isnv 27467. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) → (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))))) | ||
Theorem | nvex 27466 | The components of a normed complex vector space are sets. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.) |
⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) | ||
Theorem | isnv 27467* | The predicate "is a normed complex vector space." (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) | ||
Theorem | isnvi 27468* | Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 〈𝐺, 𝑆〉 ∈ CVecOLD & ⊢ 𝑁:𝑋⟶ℝ & ⊢ ((𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) = 0) → 𝑥 = 𝑍) & ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) & ⊢ 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉 ⇒ ⊢ 𝑈 ∈ NrmCVec | ||
Theorem | nvi 27469* | The properties of a normed complex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) | ||
Theorem | nvvc 27470 | The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑊 = (1st ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD) | ||
Theorem | nvablo 27471 | The vector addition operation of a normed complex vector space is an Abelian group. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp) | ||
Theorem | nvgrp 27472 | The vector addition operation of a normed complex vector space is a group. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) | ||
Theorem | nvgf 27473 | Mapping for the vector addition operation. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐺:(𝑋 × 𝑋)⟶𝑋) | ||
Theorem | nvsf 27474 | Mapping for the scalar multiplication operation. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑆:(ℂ × 𝑋)⟶𝑋) | ||
Theorem | nvgcl 27475 | Closure law for the vector addition (group) operation of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | ||
Theorem | nvcom 27476 | The vector addition (group) operation is commutative. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) | ||
Theorem | nvass 27477 | The vector addition (group) operation is associative. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))) | ||
Theorem | nvadd32 27478 | Commutative/associative law for vector addition. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵)) | ||
Theorem | nvrcan 27479 | Right cancellation law for vector addition. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | nvadd4 27480 | Rearrangement of 4 terms in a vector sum. (Contributed by NM, 8-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) | ||
Theorem | nvscl 27481 | Closure law for the scalar product operation of a normed complex vector space. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐴𝑆𝐵) ∈ 𝑋) | ||
Theorem | nvsid 27482 | Identity element for the scalar product of a normed complex vector space. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) | ||
Theorem | nvsass 27483 | Associative law for the scalar product of a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))) | ||
Theorem | nvscom 27484 | Commutative law for the scalar product of a normed complex vector space. (Contributed by NM, 14-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵𝑆𝐶)) = (𝐵𝑆(𝐴𝑆𝐶))) | ||
Theorem | nvdi 27485 | Distributive law for the scalar product of a complex vector space. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))) | ||
Theorem | nvdir 27486 | Distributive law for the scalar product of a complex vector space. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶))) | ||
Theorem | nv2 27487 | A vector plus itself is two times the vector. (Contributed by NM, 9-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴)) | ||
Theorem | vsfval 27488 | Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ 𝑀 = ( /𝑔 ‘𝐺) | ||
Theorem | nvzcl 27489 | Closure law for the zero vector of a normed complex vector space. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) | ||
Theorem | nv0rid 27490 | The zero vector is a right identity element. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) | ||
Theorem | nv0lid 27491 | The zero vector is a left identity element. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = 𝐴) | ||
Theorem | nv0 27492 | Zero times a vector is the zero vector. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) | ||
Theorem | nvsz 27493 | Anything times the zero vector is the zero vector. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) | ||
Theorem | nvinv 27494 | Minus 1 times a vector is the underlying group's inverse element. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑀 = (inv‘𝐺) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = (𝑀‘𝐴)) | ||
Theorem | nvinvfval 27495 | Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008.) (New usage is discouraged.) |
⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (𝑆 ∘ ◡(2nd ↾ ({-1} × V))) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑁 = (inv‘𝐺)) | ||
Theorem | nvm 27496 | Vector subtraction in terms of group division operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴𝑁𝐵)) | ||
Theorem | nvmval 27497 | Value of vector subtraction on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = (𝐴𝐺(-1𝑆𝐵))) | ||
Theorem | nvmval2 27498 | Value of vector subtraction on a normed complex vector space. (Contributed by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) = ((-1𝑆𝐵)𝐺𝐴)) | ||
Theorem | nvmfval 27499* | Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(-1𝑆𝑦)))) | ||
Theorem | nvmf 27500 | Mapping for the vector subtraction operation. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑀:(𝑋 × 𝑋)⟶𝑋) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |