MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxvalOLD Structured version   Visualization version   GIF version

Theorem vtxvalOLD 25880
Description: Obsolete version of vtxval 25878 as of 11-Nov-2021. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
vtxvalOLD (𝐺𝑉 → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))

Proof of Theorem vtxvalOLD
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2 (𝐺𝑉𝐺 ∈ V)
2 eleq1 2689 . . . 4 (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V)))
3 fveq2 6191 . . . 4 (𝑔 = 𝐺 → (1st𝑔) = (1st𝐺))
4 fveq2 6191 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
52, 3, 4ifbieq12d 4113 . . 3 (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
6 df-vtx 25876 . . 3 Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
7 fvex 6201 . . . 4 (1st𝐺) ∈ V
8 fvex 6201 . . . 4 (Base‘𝐺) ∈ V
97, 8ifex 4156 . . 3 if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)) ∈ V
105, 6, 9fvmpt 6282 . 2 (𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
111, 10syl 17 1 (𝐺𝑉 → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  ifcif 4086   × cxp 5112  cfv 5888  1st c1st 7166  Basecbs 15857  Vtxcvtx 25874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-vtx 25876
This theorem is referenced by:  funvtxdm2valOLD  25895  funvtxdmge2valOLD  25899
  Copyright terms: Public domain W3C validator