Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wlimeq12 Structured version   Visualization version   GIF version

Theorem wlimeq12 31765
Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Assertion
Ref Expression
wlimeq12 ((𝑅 = 𝑆𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵))

Proof of Theorem wlimeq12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵) → 𝐴 = 𝐵)
2 simpl 473 . . . . . 6 ((𝑅 = 𝑆𝐴 = 𝐵) → 𝑅 = 𝑆)
31, 1, 2infeq123d 8387 . . . . 5 ((𝑅 = 𝑆𝐴 = 𝐵) → inf(𝐴, 𝐴, 𝑅) = inf(𝐵, 𝐵, 𝑆))
43neeq2d 2854 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ↔ 𝑥 ≠ inf(𝐵, 𝐵, 𝑆)))
5 equid 1939 . . . . . . 7 𝑥 = 𝑥
6 predeq123 5681 . . . . . . 7 ((𝑅 = 𝑆𝐴 = 𝐵𝑥 = 𝑥) → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑆, 𝐵, 𝑥))
75, 6mp3an3 1413 . . . . . 6 ((𝑅 = 𝑆𝐴 = 𝐵) → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑆, 𝐵, 𝑥))
87, 1, 2supeq123d 8356 . . . . 5 ((𝑅 = 𝑆𝐴 = 𝐵) → sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))
98eqeq2d 2632 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) ↔ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆)))
104, 9anbi12d 747 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵) → ((𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅)) ↔ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))))
111, 10rabeqbidv 3195 . 2 ((𝑅 = 𝑆𝐴 = 𝐵) → {𝑥𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} = {𝑥𝐵 ∣ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))})
12 df-wlim 31758 . 2 WLim(𝑅, 𝐴) = {𝑥𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))}
13 df-wlim 31758 . 2 WLim(𝑆, 𝐵) = {𝑥𝐵 ∣ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))}
1411, 12, 133eqtr4g 2681 1 ((𝑅 = 𝑆𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wne 2794  {crab 2916  Predcpred 5679  supcsup 8346  infcinf 8347  WLimcwlim 31754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-sup 8348  df-inf 8349  df-wlim 31758
This theorem is referenced by:  wlimeq1  31766  wlimeq2  31767
  Copyright terms: Public domain W3C validator