Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wlimeq12 Structured version   Visualization version   Unicode version

Theorem wlimeq12 31765
Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Assertion
Ref Expression
wlimeq12  |-  ( ( R  =  S  /\  A  =  B )  -> WLim ( R ,  A
)  = WLim ( S ,  B ) )

Proof of Theorem wlimeq12
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3  |-  ( ( R  =  S  /\  A  =  B )  ->  A  =  B )
2 simpl 473 . . . . . 6  |-  ( ( R  =  S  /\  A  =  B )  ->  R  =  S )
31, 1, 2infeq123d 8387 . . . . 5  |-  ( ( R  =  S  /\  A  =  B )  -> inf ( A ,  A ,  R )  = inf ( B ,  B ,  S ) )
43neeq2d 2854 . . . 4  |-  ( ( R  =  S  /\  A  =  B )  ->  ( x  =/= inf ( A ,  A ,  R )  <->  x  =/= inf ( B ,  B ,  S ) ) )
5 equid 1939 . . . . . . 7  |-  x  =  x
6 predeq123 5681 . . . . . . 7  |-  ( ( R  =  S  /\  A  =  B  /\  x  =  x )  ->  Pred ( R ,  A ,  x )  =  Pred ( S ,  B ,  x )
)
75, 6mp3an3 1413 . . . . . 6  |-  ( ( R  =  S  /\  A  =  B )  ->  Pred ( R ,  A ,  x )  =  Pred ( S ,  B ,  x )
)
87, 1, 2supeq123d 8356 . . . . 5  |-  ( ( R  =  S  /\  A  =  B )  ->  sup ( Pred ( R ,  A ,  x ) ,  A ,  R )  =  sup ( Pred ( S ,  B ,  x ) ,  B ,  S ) )
98eqeq2d 2632 . . . 4  |-  ( ( R  =  S  /\  A  =  B )  ->  ( x  =  sup ( Pred ( R ,  A ,  x ) ,  A ,  R )  <-> 
x  =  sup ( Pred ( S ,  B ,  x ) ,  B ,  S ) ) )
104, 9anbi12d 747 . . 3  |-  ( ( R  =  S  /\  A  =  B )  ->  ( ( x  =/= inf
( A ,  A ,  R )  /\  x  =  sup ( Pred ( R ,  A ,  x ) ,  A ,  R ) )  <->  ( x  =/= inf ( B ,  B ,  S )  /\  x  =  sup ( Pred ( S ,  B ,  x ) ,  B ,  S ) ) ) )
111, 10rabeqbidv 3195 . 2  |-  ( ( R  =  S  /\  A  =  B )  ->  { x  e.  A  |  ( x  =/= inf
( A ,  A ,  R )  /\  x  =  sup ( Pred ( R ,  A ,  x ) ,  A ,  R ) ) }  =  { x  e.  B  |  ( x  =/= inf ( B ,  B ,  S )  /\  x  =  sup ( Pred ( S ,  B ,  x ) ,  B ,  S ) ) } )
12 df-wlim 31758 . 2  |- WLim ( R ,  A )  =  { x  e.  A  |  ( x  =/= inf
( A ,  A ,  R )  /\  x  =  sup ( Pred ( R ,  A ,  x ) ,  A ,  R ) ) }
13 df-wlim 31758 . 2  |- WLim ( S ,  B )  =  { x  e.  B  |  ( x  =/= inf
( B ,  B ,  S )  /\  x  =  sup ( Pred ( S ,  B ,  x ) ,  B ,  S ) ) }
1411, 12, 133eqtr4g 2681 1  |-  ( ( R  =  S  /\  A  =  B )  -> WLim ( R ,  A
)  = WLim ( S ,  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    =/= wne 2794   {crab 2916   Predcpred 5679   supcsup 8346  infcinf 8347  WLimcwlim 31754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-sup 8348  df-inf 8349  df-wlim 31758
This theorem is referenced by:  wlimeq1  31766  wlimeq2  31767
  Copyright terms: Public domain W3C validator