![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeq2d | Structured version Visualization version GIF version |
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq2d 2632 | . 2 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
3 | 2 | necon3bid 2838 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ≠ wne 2794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-ne 2795 |
This theorem is referenced by: neeq2 2857 neeqtrd 2863 fndifnfp 6442 f12dfv 6529 f13dfv 6530 infpssrlem4 9128 sqrt2irr 14979 dsmmval 20078 dsmmbas2 20081 frlmbas 20099 dfconn2 21222 alexsublem 21848 uc1pval 23899 mon1pval 23901 dchrsum2 24993 isinag 25729 uhgrwkspthlem2 26650 usgr2wlkneq 26652 usgr2trlspth 26657 lfgrn1cycl 26697 uspgrn2crct 26700 2pthdlem1 26826 3pthdlem1 27024 numclwwlk2lem1 27235 eigorth 28697 eighmorth 28823 wlimeq12 31765 limsucncmpi 32444 poimirlem25 33434 poimirlem26 33435 pridlval 33832 maxidlval 33838 lshpset 34265 lduallkr3 34449 isatl 34586 cdlemk42 36229 stoweidlem43 40260 nnfoctbdjlem 40672 |
Copyright terms: Public domain | W3C validator |