MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrecseq123 Structured version   Visualization version   GIF version

Theorem wrecseq123 7408
Description: General equality theorem for the well-founded recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.)
Assertion
Ref Expression
wrecseq123 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺))

Proof of Theorem wrecseq123
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq2 3627 . . . . . . . 8 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
213ad2ant2 1083 . . . . . . 7 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝑥𝐴𝑥𝐵))
3 predeq1 5682 . . . . . . . . . . 11 (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐴, 𝑦))
4 predeq2 5683 . . . . . . . . . . 11 (𝐴 = 𝐵 → Pred(𝑆, 𝐴, 𝑦) = Pred(𝑆, 𝐵, 𝑦))
53, 4sylan9eq 2676 . . . . . . . . . 10 ((𝑅 = 𝑆𝐴 = 𝐵) → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐵, 𝑦))
653adant3 1081 . . . . . . . . 9 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐵, 𝑦))
76sseq1d 3632 . . . . . . . 8 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥))
87ralbidv 2986 . . . . . . 7 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥))
92, 8anbi12d 747 . . . . . 6 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥)))
10 simp3 1063 . . . . . . . . 9 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → 𝐹 = 𝐺)
115reseq2d 5396 . . . . . . . . . 10 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))
12113adant3 1081 . . . . . . . . 9 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))
1310, 12fveq12d 6197 . . . . . . . 8 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))
1413eqeq2d 2632 . . . . . . 7 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → ((𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))))
1514ralbidv 2986 . . . . . 6 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))))
169, 153anbi23d 1402 . . . . 5 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))))
1716exbidv 1850 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))))
1817abbidv 2741 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))})
1918unieqd 4446 . 2 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))})
20 df-wrecs 7407 . 2 wrecs(𝑅, 𝐴, 𝐹) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
21 df-wrecs 7407 . 2 wrecs(𝑆, 𝐵, 𝐺) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))}
2219, 20, 213eqtr4g 2681 1 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  {cab 2608  wral 2912  wss 3574   cuni 4436  cres 5116  Predcpred 5679   Fn wfn 5883  cfv 5888  wrecscwrecs 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fv 5896  df-wrecs 7407
This theorem is referenced by:  wrecseq1  7410  wrecseq2  7411  wrecseq3  7412
  Copyright terms: Public domain W3C validator