MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrecseq123 Structured version   Visualization version   Unicode version

Theorem wrecseq123 7408
Description: General equality theorem for the well-founded recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.)
Assertion
Ref Expression
wrecseq123  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  -> wrecs ( R ,  A ,  F )  = wrecs ( S ,  B ,  G ) )

Proof of Theorem wrecseq123
Dummy variables  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq2 3627 . . . . . . . 8  |-  ( A  =  B  ->  (
x  C_  A  <->  x  C_  B
) )
213ad2ant2 1083 . . . . . . 7  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  ->  ( x  C_  A  <->  x 
C_  B ) )
3 predeq1 5682 . . . . . . . . . . 11  |-  ( R  =  S  ->  Pred ( R ,  A , 
y )  =  Pred ( S ,  A , 
y ) )
4 predeq2 5683 . . . . . . . . . . 11  |-  ( A  =  B  ->  Pred ( S ,  A , 
y )  =  Pred ( S ,  B , 
y ) )
53, 4sylan9eq 2676 . . . . . . . . . 10  |-  ( ( R  =  S  /\  A  =  B )  ->  Pred ( R ,  A ,  y )  =  Pred ( S ,  B ,  y )
)
653adant3 1081 . . . . . . . . 9  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  ->  Pred ( R ,  A ,  y )  =  Pred ( S ,  B ,  y )
)
76sseq1d 3632 . . . . . . . 8  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  ->  ( Pred ( R ,  A ,  y )  C_  x  <->  Pred ( S ,  B ,  y )  C_  x )
)
87ralbidv 2986 . . . . . . 7  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  ->  ( A. y  e.  x  Pred ( R ,  A ,  y )  C_  x  <->  A. y  e.  x  Pred ( S ,  B ,  y )  C_  x ) )
92, 8anbi12d 747 . . . . . 6  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  ->  ( ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  <->  ( x  C_  B  /\  A. y  e.  x  Pred ( S ,  B ,  y )  C_  x )
) )
10 simp3 1063 . . . . . . . . 9  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  ->  F  =  G )
115reseq2d 5396 . . . . . . . . . 10  |-  ( ( R  =  S  /\  A  =  B )  ->  ( f  |`  Pred ( R ,  A , 
y ) )  =  ( f  |`  Pred ( S ,  B , 
y ) ) )
12113adant3 1081 . . . . . . . . 9  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  ->  ( f  |`  Pred ( R ,  A , 
y ) )  =  ( f  |`  Pred ( S ,  B , 
y ) ) )
1310, 12fveq12d 6197 . . . . . . . 8  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  ->  ( F `  (
f  |`  Pred ( R ,  A ,  y )
) )  =  ( G `  ( f  |`  Pred ( S ,  B ,  y )
) ) )
1413eqeq2d 2632 . . . . . . 7  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  ->  ( ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) )  <->  ( f `  y )  =  ( G `  ( f  |`  Pred ( S ,  B ,  y )
) ) ) )
1514ralbidv 2986 . . . . . 6  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  ->  ( A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) )  <->  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( S ,  B ,  y )
) ) ) )
169, 153anbi23d 1402 . . . . 5  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  ->  ( ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) ) )  <->  ( f  Fn  x  /\  (
x  C_  B  /\  A. y  e.  x  Pred ( S ,  B , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( S ,  B ,  y )
) ) ) ) )
1716exbidv 1850 . . . 4  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  ->  ( E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) ) )  <->  E. x
( f  Fn  x  /\  ( x  C_  B  /\  A. y  e.  x  Pred ( S ,  B ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( S ,  B , 
y ) ) ) ) ) )
1817abbidv 2741 . . 3  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  ->  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  =  { f  |  E. x ( f  Fn  x  /\  (
x  C_  B  /\  A. y  e.  x  Pred ( S ,  B , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( S ,  B ,  y )
) ) ) } )
1918unieqd 4446 . 2  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  ->  U. { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  =  U. { f  |  E. x ( f  Fn  x  /\  ( x  C_  B  /\  A. y  e.  x  Pred ( S ,  B , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( S ,  B ,  y )
) ) ) } )
20 df-wrecs 7407 . 2  |- wrecs ( R ,  A ,  F
)  =  U. {
f  |  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) }
21 df-wrecs 7407 . 2  |- wrecs ( S ,  B ,  G
)  =  U. {
f  |  E. x
( f  Fn  x  /\  ( x  C_  B  /\  A. y  e.  x  Pred ( S ,  B ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( S ,  B , 
y ) ) ) ) }
2219, 20, 213eqtr4g 2681 1  |-  ( ( R  =  S  /\  A  =  B  /\  F  =  G )  -> wrecs ( R ,  A ,  F )  = wrecs ( S ,  B ,  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704   {cab 2608   A.wral 2912    C_ wss 3574   U.cuni 4436    |` cres 5116   Predcpred 5679    Fn wfn 5883   ` cfv 5888  wrecscwrecs 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fv 5896  df-wrecs 7407
This theorem is referenced by:  wrecseq1  7410  wrecseq2  7411  wrecseq3  7412
  Copyright terms: Public domain W3C validator