MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wununi Structured version   Visualization version   GIF version

Theorem wununi 9528
Description: A weak universe is closed under union. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wununi (𝜑 𝐴𝑈)

Proof of Theorem wununi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wununi.2 . 2 (𝜑𝐴𝑈)
2 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
3 iswun 9526 . . . . 5 (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
43ibi 256 . . . 4 (𝑈 ∈ WUni → (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
54simp3d 1075 . . 3 (𝑈 ∈ WUni → ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
6 simp1 1061 . . . 4 (( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈) → 𝑥𝑈)
76ralimi 2952 . . 3 (∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈) → ∀𝑥𝑈 𝑥𝑈)
82, 5, 73syl 18 . 2 (𝜑 → ∀𝑥𝑈 𝑥𝑈)
9 unieq 4444 . . . 4 (𝑥 = 𝐴 𝑥 = 𝐴)
109eleq1d 2686 . . 3 (𝑥 = 𝐴 → ( 𝑥𝑈 𝐴𝑈))
1110rspcv 3305 . 2 (𝐴𝑈 → (∀𝑥𝑈 𝑥𝑈 𝐴𝑈))
121, 8, 11sylc 65 1 (𝜑 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  c0 3915  𝒫 cpw 4158  {cpr 4179   cuni 4436  Tr wtr 4752  WUnicwun 9522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-uni 4437  df-tr 4753  df-wun 9524
This theorem is referenced by:  wunun  9532  wunint  9537  wundm  9550  wunrn  9551  wunfv  9554  intwun  9557  wuncval2  9569  wunstr  15881  wunfunc  16559  wunnat  16616  catcoppccl  16758  catcfuccl  16759  catcxpccl  16847
  Copyright terms: Public domain W3C validator