| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmstps | Structured version Visualization version GIF version | ||
| Description: A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmstps | ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 | . . 3 ⊢ (TopOpen‘𝑀) = (TopOpen‘𝑀) | |
| 2 | eqid 2622 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | eqid 2622 | . . 3 ⊢ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) | |
| 4 | 1, 2, 3 | isxms 22252 | . 2 ⊢ (𝑀 ∈ ∞MetSp ↔ (𝑀 ∈ TopSp ∧ (TopOpen‘𝑀) = (MetOpen‘((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀)))))) |
| 5 | 4 | simplbi 476 | 1 ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 × cxp 5112 ↾ cres 5116 ‘cfv 5888 Basecbs 15857 distcds 15950 TopOpenctopn 16082 MetOpencmopn 19736 TopSpctps 20736 ∞MetSpcxme 22122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-res 5126 df-iota 5851 df-fv 5896 df-xms 22125 |
| This theorem is referenced by: mstps 22260 ressxms 22330 prdsxmslem2 22334 tmsxpsmopn 22342 minveclem4a 23201 rrhcn 30041 rrhf 30042 rrexttps 30050 sitmcl 30413 |
| Copyright terms: Public domain | W3C validator |