| Step | Hyp | Ref
| Expression |
| 1 | | minvec.p |
. 2
⊢ 𝑃 = ∪
(𝐽 fLim (𝑋filGen𝐹)) |
| 2 | | ovex 6678 |
. . . . 5
⊢ (𝐽 fLim (𝑋filGen𝐹)) ∈ V |
| 3 | 2 | uniex 6953 |
. . . 4
⊢ ∪ (𝐽
fLim (𝑋filGen𝐹)) ∈ V |
| 4 | 3 | snid 4208 |
. . 3
⊢ ∪ (𝐽
fLim (𝑋filGen𝐹)) ∈ {∪ (𝐽
fLim (𝑋filGen𝐹))} |
| 5 | | minvec.u |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
| 6 | | cphngp 22973 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ ℂPreHil →
𝑈 ∈
NrmGrp) |
| 7 | | ngpxms 22405 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ NrmGrp → 𝑈 ∈
∞MetSp) |
| 8 | 5, 6, 7 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ ∞MetSp) |
| 9 | | minvec.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (TopOpen‘𝑈) |
| 10 | | minvec.x |
. . . . . . . . . . . 12
⊢ 𝑋 = (Base‘𝑈) |
| 11 | | minvec.d |
. . . . . . . . . . . 12
⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
| 12 | 9, 10, 11 | xmstopn 22256 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ ∞MetSp →
𝐽 = (MetOpen‘𝐷)) |
| 13 | 8, 12 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 = (MetOpen‘𝐷)) |
| 14 | 13 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽 ↾t 𝑌) = ((MetOpen‘𝐷) ↾t 𝑌)) |
| 15 | 10, 11 | xmsxmet 22261 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ ∞MetSp →
𝐷 ∈
(∞Met‘𝑋)) |
| 16 | 8, 15 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 17 | | minvec.y |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
| 18 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
| 19 | 10, 18 | lssss 18937 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
| 20 | 17, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 21 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌)) |
| 22 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(MetOpen‘𝐷) =
(MetOpen‘𝐷) |
| 23 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(MetOpen‘(𝐷
↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) |
| 24 | 21, 22, 23 | metrest 22329 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
| 25 | 16, 20, 24 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → ((MetOpen‘𝐷) ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
| 26 | 14, 25 | eqtr2d 2657 |
. . . . . . . 8
⊢ (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (𝐽 ↾t 𝑌)) |
| 27 | | minvec.m |
. . . . . . . . . . . 12
⊢ − =
(-g‘𝑈) |
| 28 | | minvec.n |
. . . . . . . . . . . 12
⊢ 𝑁 = (norm‘𝑈) |
| 29 | | minvec.w |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
| 30 | | minvec.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 31 | | minvec.r |
. . . . . . . . . . . 12
⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| 32 | | minvec.s |
. . . . . . . . . . . 12
⊢ 𝑆 = inf(𝑅, ℝ, < ) |
| 33 | | minvec.f |
. . . . . . . . . . . 12
⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
| 34 | 10, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33 | minveclem3b 23199 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (fBas‘𝑌)) |
| 35 | | fgcl 21682 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ∈ (Fil‘𝑌)) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌filGen𝐹) ∈ (Fil‘𝑌)) |
| 37 | | fvex 6201 |
. . . . . . . . . . . 12
⊢
(Base‘𝑈)
∈ V |
| 38 | 10, 37 | eqeltri 2697 |
. . . . . . . . . . 11
⊢ 𝑋 ∈ V |
| 39 | 38 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ V) |
| 40 | | trfg 21695 |
. . . . . . . . . 10
⊢ (((𝑌filGen𝐹) ∈ (Fil‘𝑌) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ V) → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹)) |
| 41 | 36, 20, 39, 40 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = (𝑌filGen𝐹)) |
| 42 | | fgabs 21683 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌 ⊆ 𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹)) |
| 43 | 34, 20, 42 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹)) |
| 44 | 43 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋filGen(𝑌filGen𝐹)) ↾t 𝑌) = ((𝑋filGen𝐹) ↾t 𝑌)) |
| 45 | 41, 44 | eqtr3d 2658 |
. . . . . . . 8
⊢ (𝜑 → (𝑌filGen𝐹) = ((𝑋filGen𝐹) ↾t 𝑌)) |
| 46 | 26, 45 | oveq12d 6668 |
. . . . . . 7
⊢ (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽 ↾t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌))) |
| 47 | | xmstps 22258 |
. . . . . . . . . 10
⊢ (𝑈 ∈ ∞MetSp →
𝑈 ∈
TopSp) |
| 48 | 8, 47 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ TopSp) |
| 49 | 10, 9 | istps 20738 |
. . . . . . . . 9
⊢ (𝑈 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 50 | 48, 49 | sylib 208 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 51 | | fbsspw 21636 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌) |
| 52 | 34, 51 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ⊆ 𝒫 𝑌) |
| 53 | | sspwb 4917 |
. . . . . . . . . . . 12
⊢ (𝑌 ⊆ 𝑋 ↔ 𝒫 𝑌 ⊆ 𝒫 𝑋) |
| 54 | 20, 53 | sylib 208 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝒫 𝑌 ⊆ 𝒫 𝑋) |
| 55 | 52, 54 | sstrd 3613 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ⊆ 𝒫 𝑋) |
| 56 | | fbasweak 21669 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋)) |
| 57 | 34, 55, 39, 56 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (fBas‘𝑋)) |
| 58 | | fgcl 21682 |
. . . . . . . . 9
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) |
| 59 | 57, 58 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) |
| 60 | | filfbas 21652 |
. . . . . . . . . . . . 13
⊢ ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → (𝑌filGen𝐹) ∈ (fBas‘𝑌)) |
| 61 | 34, 35, 60 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑌)) |
| 62 | | fbsspw 21636 |
. . . . . . . . . . . . . 14
⊢ ((𝑌filGen𝐹) ∈ (fBas‘𝑌) → (𝑌filGen𝐹) ⊆ 𝒫 𝑌) |
| 63 | 61, 62 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑌) |
| 64 | 63, 54 | sstrd 3613 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑌filGen𝐹) ⊆ 𝒫 𝑋) |
| 65 | | fbasweak 21669 |
. . . . . . . . . . . 12
⊢ (((𝑌filGen𝐹) ∈ (fBas‘𝑌) ∧ (𝑌filGen𝐹) ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V) → (𝑌filGen𝐹) ∈ (fBas‘𝑋)) |
| 66 | 61, 64, 39, 65 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑌filGen𝐹) ∈ (fBas‘𝑋)) |
| 67 | | ssfg 21676 |
. . . . . . . . . . 11
⊢ ((𝑌filGen𝐹) ∈ (fBas‘𝑋) → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹))) |
| 68 | 66, 67 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen(𝑌filGen𝐹))) |
| 69 | 68, 43 | sseqtrd 3641 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌filGen𝐹) ⊆ (𝑋filGen𝐹)) |
| 70 | | filtop 21659 |
. . . . . . . . . 10
⊢ ((𝑌filGen𝐹) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐹)) |
| 71 | 36, 70 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ (𝑌filGen𝐹)) |
| 72 | 69, 71 | sseldd 3604 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ (𝑋filGen𝐹)) |
| 73 | | flimrest 21787 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝑌 ∈ (𝑋filGen𝐹)) → ((𝐽 ↾t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
| 74 | 50, 59, 72, 73 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → ((𝐽 ↾t 𝑌) fLim ((𝑋filGen𝐹) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
| 75 | 46, 74 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) = ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
| 76 | 10, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11 | minveclem3a 23198 |
. . . . . . 7
⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
| 77 | 10, 27, 28, 5, 17, 29, 30, 9, 31, 32, 11, 33 | minveclem3 23200 |
. . . . . . 7
⊢ (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) |
| 78 | 23 | cmetcvg 23083 |
. . . . . . 7
⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ∧ (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅) |
| 79 | 76, 77, 78 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑌filGen𝐹)) ≠ ∅) |
| 80 | 75, 79 | eqnetrrd 2862 |
. . . . 5
⊢ (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅) |
| 81 | 80 | neneqd 2799 |
. . . 4
⊢ (𝜑 → ¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅) |
| 82 | | inss1 3833 |
. . . . . . 7
⊢ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹)) |
| 83 | 22 | methaus 22325 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) ∈ Haus) |
| 84 | 15, 83 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ ∞MetSp →
(MetOpen‘𝐷) ∈
Haus) |
| 85 | 12, 84 | eqeltrd 2701 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ ∞MetSp →
𝐽 ∈
Haus) |
| 86 | | hausflimi 21784 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Haus →
∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))) |
| 87 | 8, 85, 86 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))) |
| 88 | | ssn0 3976 |
. . . . . . . . . . . 12
⊢ ((((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹)) ∧ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ≠ ∅) → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅) |
| 89 | 82, 80, 88 | sylancr 695 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≠ ∅) |
| 90 | | n0moeu 3937 |
. . . . . . . . . . 11
⊢ ((𝐽 fLim (𝑋filGen𝐹)) ≠ ∅ → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))) |
| 91 | 89, 90 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (∃*𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)) ↔ ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹)))) |
| 92 | 87, 91 | mpbid 222 |
. . . . . . . . 9
⊢ (𝜑 → ∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))) |
| 93 | | euen1b 8027 |
. . . . . . . . 9
⊢ ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1𝑜 ↔
∃!𝑥 𝑥 ∈ (𝐽 fLim (𝑋filGen𝐹))) |
| 94 | 92, 93 | sylibr 224 |
. . . . . . . 8
⊢ (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) ≈
1𝑜) |
| 95 | | en1b 8024 |
. . . . . . . 8
⊢ ((𝐽 fLim (𝑋filGen𝐹)) ≈ 1𝑜 ↔
(𝐽 fLim (𝑋filGen𝐹)) = {∪ (𝐽 fLim (𝑋filGen𝐹))}) |
| 96 | 94, 95 | sylib 208 |
. . . . . . 7
⊢ (𝜑 → (𝐽 fLim (𝑋filGen𝐹)) = {∪ (𝐽 fLim (𝑋filGen𝐹))}) |
| 97 | 82, 96 | syl5sseq 3653 |
. . . . . 6
⊢ (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ {∪
(𝐽 fLim (𝑋filGen𝐹))}) |
| 98 | | sssn 4358 |
. . . . . 6
⊢ (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ {∪
(𝐽 fLim (𝑋filGen𝐹))} ↔ (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = {∪ (𝐽 fLim (𝑋filGen𝐹))})) |
| 99 | 97, 98 | sylib 208 |
. . . . 5
⊢ (𝜑 → (((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ ∨ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = {∪ (𝐽 fLim (𝑋filGen𝐹))})) |
| 100 | 99 | ord 392 |
. . . 4
⊢ (𝜑 → (¬ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = ∅ → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = {∪ (𝐽 fLim (𝑋filGen𝐹))})) |
| 101 | 81, 100 | mpd 15 |
. . 3
⊢ (𝜑 → ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) = {∪ (𝐽 fLim (𝑋filGen𝐹))}) |
| 102 | 4, 101 | syl5eleqr 2708 |
. 2
⊢ (𝜑 → ∪ (𝐽
fLim (𝑋filGen𝐹)) ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
| 103 | 1, 102 | syl5eqel 2705 |
1
⊢ (𝜑 → 𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |