| Step | Hyp | Ref
| Expression |
| 1 | | prdsxms.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 2 | | topnfn 16086 |
. . . . 5
⊢ TopOpen
Fn V |
| 3 | | prdsxms.r |
. . . . . . 7
⊢ (𝜑 → 𝑅:𝐼⟶∞MetSp) |
| 4 | | ffn 6045 |
. . . . . . 7
⊢ (𝑅:𝐼⟶∞MetSp → 𝑅 Fn 𝐼) |
| 5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 Fn 𝐼) |
| 6 | | dffn2 6047 |
. . . . . 6
⊢ (𝑅 Fn 𝐼 ↔ 𝑅:𝐼⟶V) |
| 7 | 5, 6 | sylib 208 |
. . . . 5
⊢ (𝜑 → 𝑅:𝐼⟶V) |
| 8 | | fnfco 6069 |
. . . . 5
⊢ ((TopOpen
Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen
∘ 𝑅) Fn 𝐼) |
| 9 | 2, 7, 8 | sylancr 695 |
. . . 4
⊢ (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼) |
| 10 | | prdsxms.c |
. . . . 5
⊢ 𝐶 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘))} |
| 11 | 10 | ptval 21373 |
. . . 4
⊢ ((𝐼 ∈ Fin ∧ (TopOpen
∘ 𝑅) Fn 𝐼) →
(∏t‘(TopOpen ∘ 𝑅)) = (topGen‘𝐶)) |
| 12 | 1, 9, 11 | syl2anc 693 |
. . 3
⊢ (𝜑 →
(∏t‘(TopOpen ∘ 𝑅)) = (topGen‘𝐶)) |
| 13 | | eldifsn 4317 |
. . . . . . . 8
⊢ (𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) ↔
(𝑥 ∈ ran
(ball‘𝐷) ∧ 𝑥 ≠ ∅)) |
| 14 | | prdsxms.y |
. . . . . . . . . . . 12
⊢ 𝑌 = (𝑆Xs𝑅) |
| 15 | | prdsxms.s |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| 16 | | prdsxms.d |
. . . . . . . . . . . 12
⊢ 𝐷 = (dist‘𝑌) |
| 17 | | prdsxms.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑌) |
| 18 | 14, 15, 1, 16, 17, 3 | prdsxmslem1 22333 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
| 19 | | blrn 22214 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ (∞Met‘𝐵) → (𝑥 ∈ ran (ball‘𝐷) ↔ ∃𝑝 ∈ 𝐵 ∃𝑟 ∈ ℝ* 𝑥 = (𝑝(ball‘𝐷)𝑟))) |
| 20 | 18, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ran (ball‘𝐷) ↔ ∃𝑝 ∈ 𝐵 ∃𝑟 ∈ ℝ* 𝑥 = (𝑝(ball‘𝐷)𝑟))) |
| 21 | 18 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) → 𝐷 ∈ (∞Met‘𝐵)) |
| 22 | | simprl 794 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) → 𝑝 ∈ 𝐵) |
| 23 | | simprr 796 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) → 𝑟 ∈
ℝ*) |
| 24 | | xbln0 22219 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ ↔ 0 < 𝑟)) |
| 25 | 21, 22, 23, 24 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ ↔ 0 < 𝑟)) |
| 26 | 1 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → 𝐼 ∈ Fin) |
| 27 | | mptexg 6484 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐼 ∈ Fin → (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) ∈ V) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) ∈ V) |
| 29 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟) ∈ V |
| 30 | 29 | rgenw 2924 |
. . . . . . . . . . . . . . . . . 18
⊢
∀𝑛 ∈
𝐼 ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟) ∈ V |
| 31 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) = (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) |
| 32 | 31 | fnmpt 6020 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑛 ∈
𝐼 ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟) ∈ V → (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) Fn 𝐼) |
| 33 | 30, 32 | mp1i 13 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) Fn 𝐼) |
| 34 | 3 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → 𝑅:𝐼⟶∞MetSp) |
| 35 | 34 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) ∧ 𝑘 ∈ 𝐼) → (𝑅‘𝑘) ∈ ∞MetSp) |
| 36 | | prdsxms.v |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑉 = (Base‘(𝑅‘𝑘)) |
| 37 | | prdsxms.e |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐸 = ((dist‘(𝑅‘𝑘)) ↾ (𝑉 × 𝑉)) |
| 38 | 36, 37 | xmsxmet 22261 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅‘𝑘) ∈ ∞MetSp → 𝐸 ∈ (∞Met‘𝑉)) |
| 39 | 35, 38 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) ∧ 𝑘 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) |
| 40 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))) = (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))) |
| 41 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) = (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) |
| 42 | 15 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → 𝑆 ∈ 𝑊) |
| 43 | 35 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → ∀𝑘 ∈ 𝐼 (𝑅‘𝑘) ∈ ∞MetSp) |
| 44 | | simp2l 1087 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → 𝑝 ∈ 𝐵) |
| 45 | 34 | feqmptd 6249 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → 𝑅 = (𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))) |
| 46 | 45 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → (𝑆Xs𝑅) = (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) |
| 47 | 14, 46 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → 𝑌 = (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)))) |
| 48 | 47 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → (Base‘𝑌) = (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))))) |
| 49 | 17, 48 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → 𝐵 = (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))))) |
| 50 | 44, 49 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → 𝑝 ∈ (Base‘(𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))))) |
| 51 | 40, 41, 42, 26, 43, 36, 50 | prdsbascl 16143 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → ∀𝑘 ∈ 𝐼 (𝑝‘𝑘) ∈ 𝑉) |
| 52 | 51 | r19.21bi 2932 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) ∧ 𝑘 ∈ 𝐼) → (𝑝‘𝑘) ∈ 𝑉) |
| 53 | | simp2r 1088 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → 𝑟 ∈
ℝ*) |
| 54 | 53 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) ∧ 𝑘 ∈ 𝐼) → 𝑟 ∈ ℝ*) |
| 55 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(MetOpen‘𝐸) =
(MetOpen‘𝐸) |
| 56 | 55 | blopn 22305 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑝‘𝑘) ∈ 𝑉 ∧ 𝑟 ∈ ℝ*) → ((𝑝‘𝑘)(ball‘𝐸)𝑟) ∈ (MetOpen‘𝐸)) |
| 57 | 39, 52, 54, 56 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) ∧ 𝑘 ∈ 𝐼) → ((𝑝‘𝑘)(ball‘𝐸)𝑟) ∈ (MetOpen‘𝐸)) |
| 58 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = 𝑘 → (𝑅‘𝑛) = (𝑅‘𝑘)) |
| 59 | 58 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑘 → (dist‘(𝑅‘𝑛)) = (dist‘(𝑅‘𝑘))) |
| 60 | 58 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 = 𝑘 → (Base‘(𝑅‘𝑛)) = (Base‘(𝑅‘𝑘))) |
| 61 | 60, 36 | syl6eqr 2674 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = 𝑘 → (Base‘(𝑅‘𝑛)) = 𝑉) |
| 62 | 61 | sqxpeqd 5141 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑘 → ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛))) = (𝑉 × 𝑉)) |
| 63 | 59, 62 | reseq12d 5397 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑘 → ((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))) = ((dist‘(𝑅‘𝑘)) ↾ (𝑉 × 𝑉))) |
| 64 | 63, 37 | syl6eqr 2674 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑘 → ((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))) = 𝐸) |
| 65 | 64 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑘 → (ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛))))) = (ball‘𝐸)) |
| 66 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑘 → (𝑝‘𝑛) = (𝑝‘𝑘)) |
| 67 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑘 → 𝑟 = 𝑟) |
| 68 | 65, 66, 67 | oveq123d 6671 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑘 → ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟) = ((𝑝‘𝑘)(ball‘𝐸)𝑟)) |
| 69 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ∈ V |
| 70 | 68, 31, 69 | fvmpt 6282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ 𝐼 → ((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟))‘𝑘) = ((𝑝‘𝑘)(ball‘𝐸)𝑟)) |
| 71 | 70 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) ∧ 𝑘 ∈ 𝐼) → ((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟))‘𝑘) = ((𝑝‘𝑘)(ball‘𝐸)𝑟)) |
| 72 | | fvco3 6275 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅:𝐼⟶∞MetSp ∧ 𝑘 ∈ 𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (TopOpen‘(𝑅‘𝑘))) |
| 73 | | prdsxms.k |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐾 = (TopOpen‘(𝑅‘𝑘)) |
| 74 | 72, 73 | syl6eqr 2674 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅:𝐼⟶∞MetSp ∧ 𝑘 ∈ 𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = 𝐾) |
| 75 | 34, 74 | sylan 488 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) ∧ 𝑘 ∈ 𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = 𝐾) |
| 76 | 73, 36, 37 | xmstopn 22256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅‘𝑘) ∈ ∞MetSp → 𝐾 = (MetOpen‘𝐸)) |
| 77 | 35, 76 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) ∧ 𝑘 ∈ 𝐼) → 𝐾 = (MetOpen‘𝐸)) |
| 78 | 75, 77 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) ∧ 𝑘 ∈ 𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (MetOpen‘𝐸)) |
| 79 | 57, 71, 78 | 3eltr4d 2716 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) ∧ 𝑘 ∈ 𝐼) → ((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) |
| 80 | 79 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → ∀𝑘 ∈ 𝐼 ((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) |
| 81 | 34 | feqmptd 6249 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → 𝑅 = (𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛))) |
| 82 | 81 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → (𝑆Xs𝑅) = (𝑆Xs(𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛)))) |
| 83 | 14, 82 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → 𝑌 = (𝑆Xs(𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛)))) |
| 84 | 83 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → (dist‘𝑌) = (dist‘(𝑆Xs(𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛))))) |
| 85 | 16, 84 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → 𝐷 = (dist‘(𝑆Xs(𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛))))) |
| 86 | 85 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → (ball‘𝐷) =
(ball‘(dist‘(𝑆Xs(𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛)))))) |
| 87 | 86 | oveqd 6667 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → (𝑝(ball‘𝐷)𝑟) = (𝑝(ball‘(dist‘(𝑆Xs(𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛)))))𝑟)) |
| 88 | 58 | cbvmptv 4750 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛)) = (𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘)) |
| 89 | 88 | oveq2i 6661 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆Xs(𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛))) = (𝑆Xs(𝑘 ∈ 𝐼 ↦ (𝑅‘𝑘))) |
| 90 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘(𝑆Xs(𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛)))) = (Base‘(𝑆Xs(𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛)))) |
| 91 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢
(dist‘(𝑆Xs(𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛)))) = (dist‘(𝑆Xs(𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛)))) |
| 92 | 83 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → (Base‘𝑌) = (Base‘(𝑆Xs(𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛))))) |
| 93 | 17, 92 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → 𝐵 = (Base‘(𝑆Xs(𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛))))) |
| 94 | 44, 93 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → 𝑝 ∈ (Base‘(𝑆Xs(𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛))))) |
| 95 | | simp3 1063 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → 0 < 𝑟) |
| 96 | 89, 90, 36, 37, 91, 42, 26, 35, 39, 94, 53, 95 | prdsbl 22296 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → (𝑝(ball‘(dist‘(𝑆Xs(𝑛 ∈ 𝐼 ↦ (𝑅‘𝑛)))))𝑟) = X𝑘 ∈ 𝐼 ((𝑝‘𝑘)(ball‘𝐸)𝑟)) |
| 97 | 87, 96 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 ((𝑝‘𝑘)(ball‘𝐸)𝑟)) |
| 98 | | fneq1 5979 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) → (𝑔 Fn 𝐼 ↔ (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) Fn 𝐼)) |
| 99 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑔 = (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) → (𝑔‘𝑘) = ((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟))‘𝑘)) |
| 100 | 99 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) → ((𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ↔ ((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))) |
| 101 | 100 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) → (∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ↔ ∀𝑘 ∈ 𝐼 ((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))) |
| 102 | 98, 101 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) → ((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ↔ ((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 ((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)))) |
| 103 | 99, 70 | sylan9eq 2676 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑔 = (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) ∧ 𝑘 ∈ 𝐼) → (𝑔‘𝑘) = ((𝑝‘𝑘)(ball‘𝐸)𝑟)) |
| 104 | 103 | ixpeq2dva 7923 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) → X𝑘 ∈ 𝐼 (𝑔‘𝑘) = X𝑘 ∈ 𝐼 ((𝑝‘𝑘)(ball‘𝐸)𝑟)) |
| 105 | 104 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) → ((𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 (𝑔‘𝑘) ↔ (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 ((𝑝‘𝑘)(ball‘𝐸)𝑟))) |
| 106 | 102, 105 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = (𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) → (((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 (𝑔‘𝑘)) ↔ (((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 ((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 ((𝑝‘𝑘)(ball‘𝐸)𝑟)))) |
| 107 | 106 | spcegv 3294 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) ∈ V → ((((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 ((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 ((𝑝‘𝑘)(ball‘𝐸)𝑟)) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
| 108 | 107 | 3impib 1262 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) ∈ V ∧ ((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 ((𝑛 ∈ 𝐼 ↦ ((𝑝‘𝑛)(ball‘((dist‘(𝑅‘𝑛)) ↾ ((Base‘(𝑅‘𝑛)) × (Base‘(𝑅‘𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 ((𝑝‘𝑘)(ball‘𝐸)𝑟)) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 (𝑔‘𝑘))) |
| 109 | 28, 33, 80, 97, 108 | syl121anc 1331 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) ∧ 0 <
𝑟) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 (𝑔‘𝑘))) |
| 110 | 109 | 3expia 1267 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) → (0 <
𝑟 → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
| 111 | 25, 110 | sylbid 230 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
| 112 | 111 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
| 113 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → 𝑥 = (𝑝(ball‘𝐷)𝑟)) |
| 114 | 113 | neeq1d 2853 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (𝑥 ≠ ∅ ↔ (𝑝(ball‘𝐷)𝑟) ≠ ∅)) |
| 115 | | ral0 4076 |
. . . . . . . . . . . . . . . . . . 19
⊢
∀𝑘 ∈
∅ (𝑔‘𝑘) = ∪
((TopOpen ∘ 𝑅)‘𝑘) |
| 116 | | difeq2 3722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = 𝐼 → (𝐼 ∖ 𝑧) = (𝐼 ∖ 𝐼)) |
| 117 | | difid 3948 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐼 ∖ 𝐼) = ∅ |
| 118 | 116, 117 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝐼 → (𝐼 ∖ 𝑧) = ∅) |
| 119 | 118 | raleqdv 3144 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝐼 → (∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘) ↔ ∀𝑘 ∈ ∅ (𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘))) |
| 120 | 119 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼 ∈ Fin ∧ ∀𝑘 ∈ ∅ (𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) → ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) |
| 121 | 1, 115, 120 | sylancl 694 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) |
| 122 | 121 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) →
∃𝑧 ∈ Fin
∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) |
| 123 | 122 | biantrud 528 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) → ((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)))) |
| 124 | | df-3an 1039 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘))) |
| 125 | 123, 124 | syl6rbbr 279 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) → ((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) ↔ (𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)))) |
| 126 | | eqeq1 2626 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑝(ball‘𝐷)𝑟) → (𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘) ↔ (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 (𝑔‘𝑘))) |
| 127 | 125, 126 | bi2anan9 917 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
| 128 | 127 | exbidv 1850 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘)) ↔ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
| 129 | 112, 114,
128 | 3imtr4d 283 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
| 130 | 129 | ex 450 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*)) → (𝑥 = (𝑝(ball‘𝐷)𝑟) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘))))) |
| 131 | 130 | rexlimdvva 3038 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑝 ∈ 𝐵 ∃𝑟 ∈ ℝ* 𝑥 = (𝑝(ball‘𝐷)𝑟) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘))))) |
| 132 | 20, 131 | sylbid 230 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ran (ball‘𝐷) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘))))) |
| 133 | 132 | impd 447 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑥 ≠ ∅) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
| 134 | 13, 133 | syl5bi 232 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
| 135 | 134 | alrimiv 1855 |
. . . . . 6
⊢ (𝜑 → ∀𝑥(𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
| 136 | | ssab 3672 |
. . . . . 6
⊢ ((ran
(ball‘𝐷) ∖
{∅}) ⊆ {𝑥
∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘))} ↔ ∀𝑥(𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
| 137 | 135, 136 | sylibr 224 |
. . . . 5
⊢ (𝜑 → (ran (ball‘𝐷) ∖ {∅}) ⊆
{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑔‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘 ∈ 𝐼 (𝑔‘𝑘))}) |
| 138 | 137, 10 | syl6sseqr 3652 |
. . . 4
⊢ (𝜑 → (ran (ball‘𝐷) ∖ {∅}) ⊆
𝐶) |
| 139 | | ssv 3625 |
. . . . . . . . . 10
⊢
∞MetSp ⊆ V |
| 140 | | fnssres 6004 |
. . . . . . . . . 10
⊢ ((TopOpen
Fn V ∧ ∞MetSp ⊆ V) → (TopOpen ↾ ∞MetSp) Fn
∞MetSp) |
| 141 | 2, 139, 140 | mp2an 708 |
. . . . . . . . 9
⊢ (TopOpen
↾ ∞MetSp) Fn ∞MetSp |
| 142 | | fvres 6207 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∞MetSp →
((TopOpen ↾ ∞MetSp)‘𝑥) = (TopOpen‘𝑥)) |
| 143 | | xmstps 22258 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ∞MetSp →
𝑥 ∈
TopSp) |
| 144 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘𝑥) =
(TopOpen‘𝑥) |
| 145 | 144 | tpstop 20741 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ TopSp →
(TopOpen‘𝑥) ∈
Top) |
| 146 | 143, 145 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∞MetSp →
(TopOpen‘𝑥) ∈
Top) |
| 147 | 142, 146 | eqeltrd 2701 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ∞MetSp →
((TopOpen ↾ ∞MetSp)‘𝑥) ∈ Top) |
| 148 | 147 | rgen 2922 |
. . . . . . . . 9
⊢
∀𝑥 ∈
∞MetSp ((TopOpen ↾ ∞MetSp)‘𝑥) ∈ Top |
| 149 | | ffnfv 6388 |
. . . . . . . . 9
⊢ ((TopOpen
↾ ∞MetSp):∞MetSp⟶Top ↔ ((TopOpen ↾
∞MetSp) Fn ∞MetSp ∧ ∀𝑥 ∈ ∞MetSp ((TopOpen ↾
∞MetSp)‘𝑥)
∈ Top)) |
| 150 | 141, 148,
149 | mpbir2an 955 |
. . . . . . . 8
⊢ (TopOpen
↾ ∞MetSp):∞MetSp⟶Top |
| 151 | | fco2 6059 |
. . . . . . . 8
⊢
(((TopOpen ↾ ∞MetSp):∞MetSp⟶Top ∧ 𝑅:𝐼⟶∞MetSp) → (TopOpen
∘ 𝑅):𝐼⟶Top) |
| 152 | 150, 3, 151 | sylancr 695 |
. . . . . . 7
⊢ (𝜑 → (TopOpen ∘ 𝑅):𝐼⟶Top) |
| 153 | | eqid 2622 |
. . . . . . . 8
⊢ X𝑛 ∈
𝐼 ∪ ((TopOpen ∘ 𝑅)‘𝑛) = X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) |
| 154 | 10, 153 | ptbasfi 21384 |
. . . . . . 7
⊢ ((𝐼 ∈ Fin ∧ (TopOpen
∘ 𝑅):𝐼⟶Top) → 𝐶 = (fi‘({X𝑛 ∈
𝐼 ∪ ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚 ∈ 𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢))))) |
| 155 | 1, 152, 154 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → 𝐶 = (fi‘({X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛)} ∪ ran (𝑚 ∈ 𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢))))) |
| 156 | | eqid 2622 |
. . . . . . . . 9
⊢
(MetOpen‘𝐷) =
(MetOpen‘𝐷) |
| 157 | 156 | mopntop 22245 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ Top) |
| 158 | 18, 157 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (MetOpen‘𝐷) ∈ Top) |
| 159 | 14, 17, 15, 1, 5 | prdsbas2 16129 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 = X𝑘 ∈ 𝐼 (Base‘(𝑅‘𝑘))) |
| 160 | 3, 74 | sylan 488 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = 𝐾) |
| 161 | 3 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑅‘𝑘) ∈ ∞MetSp) |
| 162 | | xmstps 22258 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅‘𝑘) ∈ ∞MetSp → (𝑅‘𝑘) ∈ TopSp) |
| 163 | 161, 162 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑅‘𝑘) ∈ TopSp) |
| 164 | 36, 73 | istps 20738 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅‘𝑘) ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑉)) |
| 165 | 163, 164 | sylib 208 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐾 ∈ (TopOn‘𝑉)) |
| 166 | 160, 165 | eqeltrd 2701 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) ∈ (TopOn‘𝑉)) |
| 167 | | toponuni 20719 |
. . . . . . . . . . . . . . 15
⊢
(((TopOpen ∘ 𝑅)‘𝑘) ∈ (TopOn‘𝑉) → 𝑉 = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) |
| 168 | 166, 167 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑉 = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) |
| 169 | 36, 168 | syl5eqr 2670 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (Base‘(𝑅‘𝑘)) = ∪ ((TopOpen
∘ 𝑅)‘𝑘)) |
| 170 | 169 | ixpeq2dva 7923 |
. . . . . . . . . . . 12
⊢ (𝜑 → X𝑘 ∈
𝐼 (Base‘(𝑅‘𝑘)) = X𝑘 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑘)) |
| 171 | 159, 170 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 = X𝑘 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑘)) |
| 172 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑛 → ((TopOpen ∘ 𝑅)‘𝑘) = ((TopOpen ∘ 𝑅)‘𝑛)) |
| 173 | 172 | unieqd 4446 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → ∪
((TopOpen ∘ 𝑅)‘𝑘) = ∪ ((TopOpen
∘ 𝑅)‘𝑛)) |
| 174 | 173 | cbvixpv 7926 |
. . . . . . . . . . 11
⊢ X𝑘 ∈
𝐼 ∪ ((TopOpen ∘ 𝑅)‘𝑘) = X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) |
| 175 | 171, 174 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 = X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛)) |
| 176 | 156 | mopntopon 22244 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ (TopOn‘𝐵)) |
| 177 | 18, 176 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (MetOpen‘𝐷) ∈ (TopOn‘𝐵)) |
| 178 | | toponmax 20730 |
. . . . . . . . . . 11
⊢
((MetOpen‘𝐷)
∈ (TopOn‘𝐵)
→ 𝐵 ∈
(MetOpen‘𝐷)) |
| 179 | 177, 178 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ (MetOpen‘𝐷)) |
| 180 | 175, 179 | eqeltrrd 2702 |
. . . . . . . . 9
⊢ (𝜑 → X𝑛 ∈
𝐼 ∪ ((TopOpen ∘ 𝑅)‘𝑛) ∈ (MetOpen‘𝐷)) |
| 181 | 180 | snssd 4340 |
. . . . . . . 8
⊢ (𝜑 → {X𝑛 ∈
𝐼 ∪ ((TopOpen ∘ 𝑅)‘𝑛)} ⊆ (MetOpen‘𝐷)) |
| 182 | 175 | mpteq1d 4738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) = (𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘))) |
| 183 | 182 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑢 ∈ 𝐾) → (𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) = (𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘))) |
| 184 | 183 | cnveqd 5298 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑢 ∈ 𝐾) → ◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) = ◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘))) |
| 185 | 184 | imaeq1d 5465 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑢 ∈ 𝐾) → (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢) = (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) |
| 186 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑝 → (𝑤‘𝑘) = (𝑝‘𝑘)) |
| 187 | 186 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑝 → ((𝑤‘𝑘) ∈ 𝑢 ↔ (𝑝‘𝑘) ∈ 𝑢)) |
| 188 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) = (𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) |
| 189 | 188 | mptpreima 5628 |
. . . . . . . . . . . . . . . . . . 19
⊢ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢) = {𝑤 ∈ 𝐵 ∣ (𝑤‘𝑘) ∈ 𝑢} |
| 190 | 187, 189 | elrab2 3366 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∈ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢) ↔ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢)) |
| 191 | 161, 38 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) |
| 192 | 191 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) → 𝐸 ∈ (∞Met‘𝑉)) |
| 193 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) → 𝑢 ∈ 𝐾) |
| 194 | 161, 76 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐾 = (MetOpen‘𝐸)) |
| 195 | 194 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) → 𝐾 = (MetOpen‘𝐸)) |
| 196 | 193, 195 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) → 𝑢 ∈ (MetOpen‘𝐸)) |
| 197 | | simprrr 805 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) → (𝑝‘𝑘) ∈ 𝑢) |
| 198 | 55 | mopni2 22298 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑢 ∈ (MetOpen‘𝐸) ∧ (𝑝‘𝑘) ∈ 𝑢) → ∃𝑟 ∈ ℝ+ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢) |
| 199 | 192, 196,
197, 198 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) → ∃𝑟 ∈ ℝ+ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢) |
| 200 | 18 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝐷 ∈ (∞Met‘𝐵)) |
| 201 | | simprrl 804 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) → 𝑝 ∈ 𝐵) |
| 202 | 201 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑝 ∈ 𝐵) |
| 203 | | rpxr 11840 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
| 204 | 203 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ*) |
| 205 | 156 | blopn 22305 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) → (𝑝(ball‘𝐷)𝑟) ∈ (MetOpen‘𝐷)) |
| 206 | 200, 202,
204, 205 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ∈ (MetOpen‘𝐷)) |
| 207 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ+) |
| 208 | | blcntr 22218 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+) → 𝑝 ∈ (𝑝(ball‘𝐷)𝑟)) |
| 209 | 200, 202,
207, 208 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑝 ∈ (𝑝(ball‘𝐷)𝑟)) |
| 210 | | blssm 22223 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) → (𝑝(ball‘𝐷)𝑟) ⊆ 𝐵) |
| 211 | 200, 202,
204, 210 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ⊆ 𝐵) |
| 212 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢) |
| 213 | | simplll 798 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝜑) |
| 214 | | rpgt0 11844 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑟 ∈ ℝ+
→ 0 < 𝑟) |
| 215 | 214 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 0 < 𝑟) |
| 216 | 213, 202,
204, 215, 97 | syl121anc 1331 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) = X𝑘 ∈ 𝐼 ((𝑝‘𝑘)(ball‘𝐸)𝑟)) |
| 217 | 216 | eleq2d 2687 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑤 ∈ (𝑝(ball‘𝐷)𝑟) ↔ 𝑤 ∈ X𝑘 ∈ 𝐼 ((𝑝‘𝑘)(ball‘𝐸)𝑟))) |
| 218 | 217 | biimpa 501 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → 𝑤 ∈ X𝑘 ∈ 𝐼 ((𝑝‘𝑘)(ball‘𝐸)𝑟)) |
| 219 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑤 ∈ V |
| 220 | 219 | elixp 7915 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑤 ∈ X𝑘 ∈
𝐼 ((𝑝‘𝑘)(ball‘𝐸)𝑟) ↔ (𝑤 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑤‘𝑘) ∈ ((𝑝‘𝑘)(ball‘𝐸)𝑟))) |
| 221 | 220 | simprbi 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 ∈ X𝑘 ∈
𝐼 ((𝑝‘𝑘)(ball‘𝐸)𝑟) → ∀𝑘 ∈ 𝐼 (𝑤‘𝑘) ∈ ((𝑝‘𝑘)(ball‘𝐸)𝑟)) |
| 222 | 218, 221 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → ∀𝑘 ∈ 𝐼 (𝑤‘𝑘) ∈ ((𝑝‘𝑘)(ball‘𝐸)𝑟)) |
| 223 | | simp-4r 807 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → 𝑘 ∈ 𝐼) |
| 224 | | rsp 2929 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑘 ∈
𝐼 (𝑤‘𝑘) ∈ ((𝑝‘𝑘)(ball‘𝐸)𝑟) → (𝑘 ∈ 𝐼 → (𝑤‘𝑘) ∈ ((𝑝‘𝑘)(ball‘𝐸)𝑟))) |
| 225 | 222, 223,
224 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → (𝑤‘𝑘) ∈ ((𝑝‘𝑘)(ball‘𝐸)𝑟)) |
| 226 | 212, 225 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → (𝑤‘𝑘) ∈ 𝑢) |
| 227 | 211, 226 | ssrabdv 3681 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ⊆ {𝑤 ∈ 𝐵 ∣ (𝑤‘𝑘) ∈ 𝑢}) |
| 228 | 227, 189 | syl6sseqr 3652 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ⊆ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢)) |
| 229 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = (𝑝(ball‘𝐷)𝑟) → (𝑝 ∈ 𝑦 ↔ 𝑝 ∈ (𝑝(ball‘𝐷)𝑟))) |
| 230 | | sseq1 3626 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = (𝑝(ball‘𝐷)𝑟) → (𝑦 ⊆ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢) ↔ (𝑝(ball‘𝐷)𝑟) ⊆ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢))) |
| 231 | 229, 230 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = (𝑝(ball‘𝐷)𝑟) → ((𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢)) ↔ (𝑝 ∈ (𝑝(ball‘𝐷)𝑟) ∧ (𝑝(ball‘𝐷)𝑟) ⊆ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
| 232 | 231 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑝(ball‘𝐷)𝑟) ∈ (MetOpen‘𝐷) ∧ (𝑝 ∈ (𝑝(ball‘𝐷)𝑟) ∧ (𝑝(ball‘𝐷)𝑟) ⊆ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢))) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢))) |
| 233 | 206, 209,
228, 232 | syl12anc 1324 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝‘𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢))) |
| 234 | 199, 233 | rexlimddv 3035 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑢 ∈ 𝐾 ∧ (𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢))) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢))) |
| 235 | 234 | expr 643 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑢 ∈ 𝐾) → ((𝑝 ∈ 𝐵 ∧ (𝑝‘𝑘) ∈ 𝑢) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
| 236 | 190, 235 | syl5bi 232 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑢 ∈ 𝐾) → (𝑝 ∈ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
| 237 | 236 | ralrimiv 2965 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑢 ∈ 𝐾) → ∀𝑝 ∈ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢)∃𝑦 ∈ (MetOpen‘𝐷)(𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢))) |
| 238 | 158 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑢 ∈ 𝐾) → (MetOpen‘𝐷) ∈ Top) |
| 239 | | eltop2 20779 |
. . . . . . . . . . . . . . . . 17
⊢
((MetOpen‘𝐷)
∈ Top → ((◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑝 ∈ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢)∃𝑦 ∈ (MetOpen‘𝐷)(𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
| 240 | 238, 239 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑢 ∈ 𝐾) → ((◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑝 ∈ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢)∃𝑦 ∈ (MetOpen‘𝐷)(𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
| 241 | 237, 240 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑢 ∈ 𝐾) → (◡(𝑤 ∈ 𝐵 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷)) |
| 242 | 185, 241 | eqeltrrd 2702 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑢 ∈ 𝐾) → (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷)) |
| 243 | 242 | ralrimiva 2966 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ∀𝑢 ∈ 𝐾 (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷)) |
| 244 | 160 | raleqdv 3144 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)(◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑢 ∈ 𝐾 (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))) |
| 245 | 243, 244 | mpbird 247 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)(◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷)) |
| 246 | 245 | ralrimiva 2966 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝐼 ∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)(◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷)) |
| 247 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → ((TopOpen ∘ 𝑅)‘𝑘) = ((TopOpen ∘ 𝑅)‘𝑚)) |
| 248 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑚 → (𝑤‘𝑘) = (𝑤‘𝑚)) |
| 249 | 248 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → (𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘)) = (𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚))) |
| 250 | 249 | cnveqd 5298 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → ◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘)) = ◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚))) |
| 251 | 250 | imaeq1d 5465 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑚 → (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) = (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢)) |
| 252 | 251 | eleq1d 2686 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → ((◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷))) |
| 253 | 247, 252 | raleqbidv 3152 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → (∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)(◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)(◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷))) |
| 254 | 253 | cbvralv 3171 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
𝐼 ∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)(◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑚 ∈ 𝐼 ∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)(◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷)) |
| 255 | 246, 254 | sylib 208 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑚 ∈ 𝐼 ∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)(◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷)) |
| 256 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ 𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢)) = (𝑚 ∈ 𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢)) |
| 257 | 256 | fmpt2x 7236 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈
𝐼 ∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)(◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ (𝑚 ∈ 𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢)):∪ 𝑚 ∈ 𝐼 ({𝑚} × ((TopOpen ∘ 𝑅)‘𝑚))⟶(MetOpen‘𝐷)) |
| 258 | 255, 257 | sylib 208 |
. . . . . . . . 9
⊢ (𝜑 → (𝑚 ∈ 𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢)):∪ 𝑚 ∈ 𝐼 ({𝑚} × ((TopOpen ∘ 𝑅)‘𝑚))⟶(MetOpen‘𝐷)) |
| 259 | | frn 6053 |
. . . . . . . . 9
⊢ ((𝑚 ∈ 𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢)):∪ 𝑚 ∈ 𝐼 ({𝑚} × ((TopOpen ∘ 𝑅)‘𝑚))⟶(MetOpen‘𝐷) → ran (𝑚 ∈ 𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢)) ⊆ (MetOpen‘𝐷)) |
| 260 | 258, 259 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ran (𝑚 ∈ 𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢)) ⊆ (MetOpen‘𝐷)) |
| 261 | 181, 260 | unssd 3789 |
. . . . . . 7
⊢ (𝜑 → ({X𝑛 ∈
𝐼 ∪ ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚 ∈ 𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢))) ⊆ (MetOpen‘𝐷)) |
| 262 | | fiss 8330 |
. . . . . . 7
⊢
(((MetOpen‘𝐷)
∈ Top ∧ ({X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛)} ∪ ran (𝑚 ∈ 𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢))) ⊆ (MetOpen‘𝐷)) → (fi‘({X𝑛 ∈
𝐼 ∪ ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚 ∈ 𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢)))) ⊆ (fi‘(MetOpen‘𝐷))) |
| 263 | 158, 261,
262 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (fi‘({X𝑛 ∈
𝐼 ∪ ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚 ∈ 𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐼 ∪ ((TopOpen
∘ 𝑅)‘𝑛) ↦ (𝑤‘𝑚)) “ 𝑢)))) ⊆ (fi‘(MetOpen‘𝐷))) |
| 264 | 155, 263 | eqsstrd 3639 |
. . . . 5
⊢ (𝜑 → 𝐶 ⊆ (fi‘(MetOpen‘𝐷))) |
| 265 | | fitop 20705 |
. . . . . . 7
⊢
((MetOpen‘𝐷)
∈ Top → (fi‘(MetOpen‘𝐷)) = (MetOpen‘𝐷)) |
| 266 | 158, 265 | syl 17 |
. . . . . 6
⊢ (𝜑 →
(fi‘(MetOpen‘𝐷)) = (MetOpen‘𝐷)) |
| 267 | 156 | mopnval 22243 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) = (topGen‘ran
(ball‘𝐷))) |
| 268 | 18, 267 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (MetOpen‘𝐷) = (topGen‘ran
(ball‘𝐷))) |
| 269 | | tgdif0 20796 |
. . . . . . 7
⊢
(topGen‘(ran (ball‘𝐷) ∖ {∅})) = (topGen‘ran
(ball‘𝐷)) |
| 270 | 268, 269 | syl6eqr 2674 |
. . . . . 6
⊢ (𝜑 → (MetOpen‘𝐷) = (topGen‘(ran
(ball‘𝐷) ∖
{∅}))) |
| 271 | 266, 270 | eqtrd 2656 |
. . . . 5
⊢ (𝜑 →
(fi‘(MetOpen‘𝐷)) = (topGen‘(ran (ball‘𝐷) ∖
{∅}))) |
| 272 | 264, 271 | sseqtrd 3641 |
. . . 4
⊢ (𝜑 → 𝐶 ⊆ (topGen‘(ran
(ball‘𝐷) ∖
{∅}))) |
| 273 | | 2basgen 20794 |
. . . 4
⊢ (((ran
(ball‘𝐷) ∖
{∅}) ⊆ 𝐶 ∧
𝐶 ⊆
(topGen‘(ran (ball‘𝐷) ∖ {∅}))) →
(topGen‘(ran (ball‘𝐷) ∖ {∅})) = (topGen‘𝐶)) |
| 274 | 138, 272,
273 | syl2anc 693 |
. . 3
⊢ (𝜑 → (topGen‘(ran
(ball‘𝐷) ∖
{∅})) = (topGen‘𝐶)) |
| 275 | 12, 274 | eqtr4d 2659 |
. 2
⊢ (𝜑 →
(∏t‘(TopOpen ∘ 𝑅)) = (topGen‘(ran (ball‘𝐷) ∖
{∅}))) |
| 276 | | prdsxms.j |
. . 3
⊢ 𝐽 = (TopOpen‘𝑌) |
| 277 | 14, 15, 1, 5, 276 | prdstopn 21431 |
. 2
⊢ (𝜑 → 𝐽 = (∏t‘(TopOpen
∘ 𝑅))) |
| 278 | 275, 277,
270 | 3eqtr4d 2666 |
1
⊢ (𝜑 → 𝐽 = (MetOpen‘𝐷)) |