MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcan2 Structured version   Visualization version   GIF version

Theorem xpcan2 5571
Description: Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.)
Assertion
Ref Expression
xpcan2 (𝐶 ≠ ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem xpcan2
StepHypRef Expression
1 xp11 5569 . . 3 ((𝐴 ≠ ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ (𝐴 = 𝐵𝐶 = 𝐶)))
2 eqid 2622 . . . 4 𝐶 = 𝐶
32biantru 526 . . 3 (𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐶 = 𝐶))
41, 3syl6bbr 278 . 2 ((𝐴 ≠ ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
5 nne 2798 . . 3 𝐴 ≠ ∅ ↔ 𝐴 = ∅)
6 simpl 473 . . . . 5 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → 𝐴 = ∅)
7 xpeq1 5128 . . . . . . . . . 10 (𝐴 = ∅ → (𝐴 × 𝐶) = (∅ × 𝐶))
8 0xp 5199 . . . . . . . . . 10 (∅ × 𝐶) = ∅
97, 8syl6eq 2672 . . . . . . . . 9 (𝐴 = ∅ → (𝐴 × 𝐶) = ∅)
109eqeq1d 2624 . . . . . . . 8 (𝐴 = ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ ∅ = (𝐵 × 𝐶)))
11 eqcom 2629 . . . . . . . 8 (∅ = (𝐵 × 𝐶) ↔ (𝐵 × 𝐶) = ∅)
1210, 11syl6bb 276 . . . . . . 7 (𝐴 = ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ (𝐵 × 𝐶) = ∅))
1312adantr 481 . . . . . 6 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ (𝐵 × 𝐶) = ∅))
14 df-ne 2795 . . . . . . . 8 (𝐶 ≠ ∅ ↔ ¬ 𝐶 = ∅)
15 xpeq0 5554 . . . . . . . . 9 ((𝐵 × 𝐶) = ∅ ↔ (𝐵 = ∅ ∨ 𝐶 = ∅))
16 orel2 398 . . . . . . . . 9 𝐶 = ∅ → ((𝐵 = ∅ ∨ 𝐶 = ∅) → 𝐵 = ∅))
1715, 16syl5bi 232 . . . . . . . 8 𝐶 = ∅ → ((𝐵 × 𝐶) = ∅ → 𝐵 = ∅))
1814, 17sylbi 207 . . . . . . 7 (𝐶 ≠ ∅ → ((𝐵 × 𝐶) = ∅ → 𝐵 = ∅))
1918adantl 482 . . . . . 6 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → ((𝐵 × 𝐶) = ∅ → 𝐵 = ∅))
2013, 19sylbid 230 . . . . 5 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) → 𝐵 = ∅))
21 eqtr3 2643 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = 𝐵)
226, 20, 21syl6an 568 . . . 4 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) → 𝐴 = 𝐵))
23 xpeq1 5128 . . . 4 (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
2422, 23impbid1 215 . . 3 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
255, 24sylanb 489 . 2 ((¬ 𝐴 ≠ ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
264, 25pm2.61ian 831 1 (𝐶 ≠ ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wne 2794  c0 3915   × cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator