Proof of Theorem xpcan
| Step | Hyp | Ref
| Expression |
| 1 | | xp11 5569 |
. . 3
⊢ ((𝐶 ≠ ∅ ∧ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ (𝐶 = 𝐶 ∧ 𝐴 = 𝐵))) |
| 2 | | eqid 2622 |
. . . 4
⊢ 𝐶 = 𝐶 |
| 3 | 2 | biantrur 527 |
. . 3
⊢ (𝐴 = 𝐵 ↔ (𝐶 = 𝐶 ∧ 𝐴 = 𝐵)) |
| 4 | 1, 3 | syl6bbr 278 |
. 2
⊢ ((𝐶 ≠ ∅ ∧ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵)) |
| 5 | | nne 2798 |
. . . 4
⊢ (¬
𝐴 ≠ ∅ ↔ 𝐴 = ∅) |
| 6 | | simpr 477 |
. . . . 5
⊢ ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → 𝐴 = ∅) |
| 7 | | xpeq2 5129 |
. . . . . . . . . 10
⊢ (𝐴 = ∅ → (𝐶 × 𝐴) = (𝐶 × ∅)) |
| 8 | | xp0 5552 |
. . . . . . . . . 10
⊢ (𝐶 × ∅) =
∅ |
| 9 | 7, 8 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝐴 = ∅ → (𝐶 × 𝐴) = ∅) |
| 10 | 9 | eqeq1d 2624 |
. . . . . . . 8
⊢ (𝐴 = ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ ∅ = (𝐶 × 𝐵))) |
| 11 | | eqcom 2629 |
. . . . . . . 8
⊢ (∅
= (𝐶 × 𝐵) ↔ (𝐶 × 𝐵) = ∅) |
| 12 | 10, 11 | syl6bb 276 |
. . . . . . 7
⊢ (𝐴 = ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ (𝐶 × 𝐵) = ∅)) |
| 13 | 12 | adantl 482 |
. . . . . 6
⊢ ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ (𝐶 × 𝐵) = ∅)) |
| 14 | | df-ne 2795 |
. . . . . . . 8
⊢ (𝐶 ≠ ∅ ↔ ¬ 𝐶 = ∅) |
| 15 | | xpeq0 5554 |
. . . . . . . . 9
⊢ ((𝐶 × 𝐵) = ∅ ↔ (𝐶 = ∅ ∨ 𝐵 = ∅)) |
| 16 | | orel1 397 |
. . . . . . . . 9
⊢ (¬
𝐶 = ∅ → ((𝐶 = ∅ ∨ 𝐵 = ∅) → 𝐵 = ∅)) |
| 17 | 15, 16 | syl5bi 232 |
. . . . . . . 8
⊢ (¬
𝐶 = ∅ → ((𝐶 × 𝐵) = ∅ → 𝐵 = ∅)) |
| 18 | 14, 17 | sylbi 207 |
. . . . . . 7
⊢ (𝐶 ≠ ∅ → ((𝐶 × 𝐵) = ∅ → 𝐵 = ∅)) |
| 19 | 18 | adantr 481 |
. . . . . 6
⊢ ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐵) = ∅ → 𝐵 = ∅)) |
| 20 | 13, 19 | sylbid 230 |
. . . . 5
⊢ ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) → 𝐵 = ∅)) |
| 21 | | eqtr3 2643 |
. . . . 5
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = 𝐵) |
| 22 | 6, 20, 21 | syl6an 568 |
. . . 4
⊢ ((𝐶 ≠ ∅ ∧ 𝐴 = ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) → 𝐴 = 𝐵)) |
| 23 | 5, 22 | sylan2b 492 |
. . 3
⊢ ((𝐶 ≠ ∅ ∧ ¬ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) → 𝐴 = 𝐵)) |
| 24 | | xpeq2 5129 |
. . 3
⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| 25 | 23, 24 | impbid1 215 |
. 2
⊢ ((𝐶 ≠ ∅ ∧ ¬ 𝐴 ≠ ∅) → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵)) |
| 26 | 4, 25 | pm2.61dan 832 |
1
⊢ (𝐶 ≠ ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵)) |