Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xppreima Structured version   Visualization version   GIF version

Theorem xppreima 29449
Description: The preimage of a Cartesian product is the intersection of the preimages of each component function. (Contributed by Thierry Arnoux, 6-Jun-2017.)
Assertion
Ref Expression
xppreima ((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) → (𝐹 “ (𝑌 × 𝑍)) = (((1st𝐹) “ 𝑌) ∩ ((2nd𝐹) “ 𝑍)))

Proof of Theorem xppreima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfn 5918 . . . . 5 (Fun 𝐹𝐹 Fn dom 𝐹)
2 fncnvima2 6339 . . . . 5 (𝐹 Fn dom 𝐹 → (𝐹 “ (𝑌 × 𝑍)) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ∈ (𝑌 × 𝑍)})
31, 2sylbi 207 . . . 4 (Fun 𝐹 → (𝐹 “ (𝑌 × 𝑍)) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ∈ (𝑌 × 𝑍)})
43adantr 481 . . 3 ((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) → (𝐹 “ (𝑌 × 𝑍)) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ∈ (𝑌 × 𝑍)})
5 fvco 6274 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((1st𝐹)‘𝑥) = (1st ‘(𝐹𝑥)))
6 fvco 6274 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((2nd𝐹)‘𝑥) = (2nd ‘(𝐹𝑥)))
75, 6opeq12d 4410 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ⟨((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)⟩ = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
87eqeq2d 2632 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = ⟨((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)⟩ ↔ (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
95eleq1d 2686 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (((1st𝐹)‘𝑥) ∈ 𝑌 ↔ (1st ‘(𝐹𝑥)) ∈ 𝑌))
106eleq1d 2686 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (((2nd𝐹)‘𝑥) ∈ 𝑍 ↔ (2nd ‘(𝐹𝑥)) ∈ 𝑍))
119, 10anbi12d 747 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍) ↔ ((1st ‘(𝐹𝑥)) ∈ 𝑌 ∧ (2nd ‘(𝐹𝑥)) ∈ 𝑍)))
128, 11anbi12d 747 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (((𝐹𝑥) = ⟨((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)⟩ ∧ (((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍)) ↔ ((𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩ ∧ ((1st ‘(𝐹𝑥)) ∈ 𝑌 ∧ (2nd ‘(𝐹𝑥)) ∈ 𝑍))))
13 elxp6 7200 . . . . . . 7 ((𝐹𝑥) ∈ (𝑌 × 𝑍) ↔ ((𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩ ∧ ((1st ‘(𝐹𝑥)) ∈ 𝑌 ∧ (2nd ‘(𝐹𝑥)) ∈ 𝑍)))
1412, 13syl6rbbr 279 . . . . . 6 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ (𝑌 × 𝑍) ↔ ((𝐹𝑥) = ⟨((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)⟩ ∧ (((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍))))
1514adantlr 751 . . . . 5 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ (𝑌 × 𝑍) ↔ ((𝐹𝑥) = ⟨((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)⟩ ∧ (((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍))))
16 opfv 29448 . . . . . 6 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) = ⟨((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)⟩)
1716biantrurd 529 . . . . 5 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → ((((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍) ↔ ((𝐹𝑥) = ⟨((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)⟩ ∧ (((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍))))
18 fo1st 7188 . . . . . . . . . . 11 1st :V–onto→V
19 fofun 6116 . . . . . . . . . . 11 (1st :V–onto→V → Fun 1st )
2018, 19ax-mp 5 . . . . . . . . . 10 Fun 1st
21 funco 5928 . . . . . . . . . 10 ((Fun 1st ∧ Fun 𝐹) → Fun (1st𝐹))
2220, 21mpan 706 . . . . . . . . 9 (Fun 𝐹 → Fun (1st𝐹))
2322adantr 481 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → Fun (1st𝐹))
24 ssv 3625 . . . . . . . . . . . 12 (𝐹 “ dom 𝐹) ⊆ V
25 fof 6115 . . . . . . . . . . . . 13 (1st :V–onto→V → 1st :V⟶V)
26 fdm 6051 . . . . . . . . . . . . 13 (1st :V⟶V → dom 1st = V)
2718, 25, 26mp2b 10 . . . . . . . . . . . 12 dom 1st = V
2824, 27sseqtr4i 3638 . . . . . . . . . . 11 (𝐹 “ dom 𝐹) ⊆ dom 1st
29 ssid 3624 . . . . . . . . . . . 12 dom 𝐹 ⊆ dom 𝐹
30 funimass3 6333 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ dom 𝐹 ⊆ dom 𝐹) → ((𝐹 “ dom 𝐹) ⊆ dom 1st ↔ dom 𝐹 ⊆ (𝐹 “ dom 1st )))
3129, 30mpan2 707 . . . . . . . . . . 11 (Fun 𝐹 → ((𝐹 “ dom 𝐹) ⊆ dom 1st ↔ dom 𝐹 ⊆ (𝐹 “ dom 1st )))
3228, 31mpbii 223 . . . . . . . . . 10 (Fun 𝐹 → dom 𝐹 ⊆ (𝐹 “ dom 1st ))
3332sselda 3603 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → 𝑥 ∈ (𝐹 “ dom 1st ))
34 dmco 5643 . . . . . . . . 9 dom (1st𝐹) = (𝐹 “ dom 1st )
3533, 34syl6eleqr 2712 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → 𝑥 ∈ dom (1st𝐹))
36 fvimacnv 6332 . . . . . . . 8 ((Fun (1st𝐹) ∧ 𝑥 ∈ dom (1st𝐹)) → (((1st𝐹)‘𝑥) ∈ 𝑌𝑥 ∈ ((1st𝐹) “ 𝑌)))
3723, 35, 36syl2anc 693 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (((1st𝐹)‘𝑥) ∈ 𝑌𝑥 ∈ ((1st𝐹) “ 𝑌)))
38 fo2nd 7189 . . . . . . . . . . 11 2nd :V–onto→V
39 fofun 6116 . . . . . . . . . . 11 (2nd :V–onto→V → Fun 2nd )
4038, 39ax-mp 5 . . . . . . . . . 10 Fun 2nd
41 funco 5928 . . . . . . . . . 10 ((Fun 2nd ∧ Fun 𝐹) → Fun (2nd𝐹))
4240, 41mpan 706 . . . . . . . . 9 (Fun 𝐹 → Fun (2nd𝐹))
4342adantr 481 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → Fun (2nd𝐹))
44 fof 6115 . . . . . . . . . . . . 13 (2nd :V–onto→V → 2nd :V⟶V)
45 fdm 6051 . . . . . . . . . . . . 13 (2nd :V⟶V → dom 2nd = V)
4638, 44, 45mp2b 10 . . . . . . . . . . . 12 dom 2nd = V
4724, 46sseqtr4i 3638 . . . . . . . . . . 11 (𝐹 “ dom 𝐹) ⊆ dom 2nd
48 funimass3 6333 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ dom 𝐹 ⊆ dom 𝐹) → ((𝐹 “ dom 𝐹) ⊆ dom 2nd ↔ dom 𝐹 ⊆ (𝐹 “ dom 2nd )))
4929, 48mpan2 707 . . . . . . . . . . 11 (Fun 𝐹 → ((𝐹 “ dom 𝐹) ⊆ dom 2nd ↔ dom 𝐹 ⊆ (𝐹 “ dom 2nd )))
5047, 49mpbii 223 . . . . . . . . . 10 (Fun 𝐹 → dom 𝐹 ⊆ (𝐹 “ dom 2nd ))
5150sselda 3603 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → 𝑥 ∈ (𝐹 “ dom 2nd ))
52 dmco 5643 . . . . . . . . 9 dom (2nd𝐹) = (𝐹 “ dom 2nd )
5351, 52syl6eleqr 2712 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → 𝑥 ∈ dom (2nd𝐹))
54 fvimacnv 6332 . . . . . . . 8 ((Fun (2nd𝐹) ∧ 𝑥 ∈ dom (2nd𝐹)) → (((2nd𝐹)‘𝑥) ∈ 𝑍𝑥 ∈ ((2nd𝐹) “ 𝑍)))
5543, 53, 54syl2anc 693 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (((2nd𝐹)‘𝑥) ∈ 𝑍𝑥 ∈ ((2nd𝐹) “ 𝑍)))
5637, 55anbi12d 747 . . . . . 6 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍) ↔ (𝑥 ∈ ((1st𝐹) “ 𝑌) ∧ 𝑥 ∈ ((2nd𝐹) “ 𝑍))))
5756adantlr 751 . . . . 5 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → ((((1st𝐹)‘𝑥) ∈ 𝑌 ∧ ((2nd𝐹)‘𝑥) ∈ 𝑍) ↔ (𝑥 ∈ ((1st𝐹) “ 𝑌) ∧ 𝑥 ∈ ((2nd𝐹) “ 𝑍))))
5815, 17, 573bitr2d 296 . . . 4 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ (𝑌 × 𝑍) ↔ (𝑥 ∈ ((1st𝐹) “ 𝑌) ∧ 𝑥 ∈ ((2nd𝐹) “ 𝑍))))
5958rabbidva 3188 . . 3 ((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ∈ (𝑌 × 𝑍)} = {𝑥 ∈ dom 𝐹 ∣ (𝑥 ∈ ((1st𝐹) “ 𝑌) ∧ 𝑥 ∈ ((2nd𝐹) “ 𝑍))})
604, 59eqtrd 2656 . 2 ((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) → (𝐹 “ (𝑌 × 𝑍)) = {𝑥 ∈ dom 𝐹 ∣ (𝑥 ∈ ((1st𝐹) “ 𝑌) ∧ 𝑥 ∈ ((2nd𝐹) “ 𝑍))})
61 dfin5 3582 . . . 4 (dom 𝐹 ∩ ((1st𝐹) “ 𝑌)) = {𝑥 ∈ dom 𝐹𝑥 ∈ ((1st𝐹) “ 𝑌)}
62 dfin5 3582 . . . 4 (dom 𝐹 ∩ ((2nd𝐹) “ 𝑍)) = {𝑥 ∈ dom 𝐹𝑥 ∈ ((2nd𝐹) “ 𝑍)}
6361, 62ineq12i 3812 . . 3 ((dom 𝐹 ∩ ((1st𝐹) “ 𝑌)) ∩ (dom 𝐹 ∩ ((2nd𝐹) “ 𝑍))) = ({𝑥 ∈ dom 𝐹𝑥 ∈ ((1st𝐹) “ 𝑌)} ∩ {𝑥 ∈ dom 𝐹𝑥 ∈ ((2nd𝐹) “ 𝑍)})
64 cnvimass 5485 . . . . . 6 ((1st𝐹) “ 𝑌) ⊆ dom (1st𝐹)
65 dmcoss 5385 . . . . . 6 dom (1st𝐹) ⊆ dom 𝐹
6664, 65sstri 3612 . . . . 5 ((1st𝐹) “ 𝑌) ⊆ dom 𝐹
67 sseqin2 3817 . . . . 5 (((1st𝐹) “ 𝑌) ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ ((1st𝐹) “ 𝑌)) = ((1st𝐹) “ 𝑌))
6866, 67mpbi 220 . . . 4 (dom 𝐹 ∩ ((1st𝐹) “ 𝑌)) = ((1st𝐹) “ 𝑌)
69 cnvimass 5485 . . . . . 6 ((2nd𝐹) “ 𝑍) ⊆ dom (2nd𝐹)
70 dmcoss 5385 . . . . . 6 dom (2nd𝐹) ⊆ dom 𝐹
7169, 70sstri 3612 . . . . 5 ((2nd𝐹) “ 𝑍) ⊆ dom 𝐹
72 sseqin2 3817 . . . . 5 (((2nd𝐹) “ 𝑍) ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ ((2nd𝐹) “ 𝑍)) = ((2nd𝐹) “ 𝑍))
7371, 72mpbi 220 . . . 4 (dom 𝐹 ∩ ((2nd𝐹) “ 𝑍)) = ((2nd𝐹) “ 𝑍)
7468, 73ineq12i 3812 . . 3 ((dom 𝐹 ∩ ((1st𝐹) “ 𝑌)) ∩ (dom 𝐹 ∩ ((2nd𝐹) “ 𝑍))) = (((1st𝐹) “ 𝑌) ∩ ((2nd𝐹) “ 𝑍))
75 inrab 3899 . . 3 ({𝑥 ∈ dom 𝐹𝑥 ∈ ((1st𝐹) “ 𝑌)} ∩ {𝑥 ∈ dom 𝐹𝑥 ∈ ((2nd𝐹) “ 𝑍)}) = {𝑥 ∈ dom 𝐹 ∣ (𝑥 ∈ ((1st𝐹) “ 𝑌) ∧ 𝑥 ∈ ((2nd𝐹) “ 𝑍))}
7663, 74, 753eqtr3ri 2653 . 2 {𝑥 ∈ dom 𝐹 ∣ (𝑥 ∈ ((1st𝐹) “ 𝑌) ∧ 𝑥 ∈ ((2nd𝐹) “ 𝑍))} = (((1st𝐹) “ 𝑌) ∩ ((2nd𝐹) “ 𝑍))
7760, 76syl6eq 2672 1 ((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) → (𝐹 “ (𝑌 × 𝑍)) = (((1st𝐹) “ 𝑌) ∩ ((2nd𝐹) “ 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  cin 3573  wss 3574  cop 4183   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  ccom 5118  Fun wfun 5882   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  1st c1st 7166  2nd c2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  xppreima2  29450
  Copyright terms: Public domain W3C validator