Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xppreima2 Structured version   Visualization version   GIF version

Theorem xppreima2 29450
Description: The preimage of a Cartesian product is the intersection of the preimages of each component function. (Contributed by Thierry Arnoux, 7-Jun-2017.)
Hypotheses
Ref Expression
xppreima2.1 (𝜑𝐹:𝐴𝐵)
xppreima2.2 (𝜑𝐺:𝐴𝐶)
xppreima2.3 𝐻 = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
Assertion
Ref Expression
xppreima2 (𝜑 → (𝐻 “ (𝑌 × 𝑍)) = ((𝐹𝑌) ∩ (𝐺𝑍)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝜑,𝑥
Allowed substitution hints:   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem xppreima2
StepHypRef Expression
1 xppreima2.3 . . . 4 𝐻 = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
21funmpt2 5927 . . 3 Fun 𝐻
3 xppreima2.1 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
43ffvelrnda 6359 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
5 xppreima2.2 . . . . . . . 8 (𝜑𝐺:𝐴𝐶)
65ffvelrnda 6359 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝐶)
7 opelxp 5146 . . . . . . 7 (⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶) ↔ ((𝐹𝑥) ∈ 𝐵 ∧ (𝐺𝑥) ∈ 𝐶))
84, 6, 7sylanbrc 698 . . . . . 6 ((𝜑𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶))
98, 1fmptd 6385 . . . . 5 (𝜑𝐻:𝐴⟶(𝐵 × 𝐶))
10 frn 6053 . . . . 5 (𝐻:𝐴⟶(𝐵 × 𝐶) → ran 𝐻 ⊆ (𝐵 × 𝐶))
119, 10syl 17 . . . 4 (𝜑 → ran 𝐻 ⊆ (𝐵 × 𝐶))
12 xpss 5226 . . . 4 (𝐵 × 𝐶) ⊆ (V × V)
1311, 12syl6ss 3615 . . 3 (𝜑 → ran 𝐻 ⊆ (V × V))
14 xppreima 29449 . . 3 ((Fun 𝐻 ∧ ran 𝐻 ⊆ (V × V)) → (𝐻 “ (𝑌 × 𝑍)) = (((1st𝐻) “ 𝑌) ∩ ((2nd𝐻) “ 𝑍)))
152, 13, 14sylancr 695 . 2 (𝜑 → (𝐻 “ (𝑌 × 𝑍)) = (((1st𝐻) “ 𝑌) ∩ ((2nd𝐻) “ 𝑍)))
16 fo1st 7188 . . . . . . . . 9 1st :V–onto→V
17 fofn 6117 . . . . . . . . 9 (1st :V–onto→V → 1st Fn V)
1816, 17ax-mp 5 . . . . . . . 8 1st Fn V
19 opex 4932 . . . . . . . . 9 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V
2019, 1fnmpti 6022 . . . . . . . 8 𝐻 Fn 𝐴
21 ssv 3625 . . . . . . . 8 ran 𝐻 ⊆ V
22 fnco 5999 . . . . . . . 8 ((1st Fn V ∧ 𝐻 Fn 𝐴 ∧ ran 𝐻 ⊆ V) → (1st𝐻) Fn 𝐴)
2318, 20, 21, 22mp3an 1424 . . . . . . 7 (1st𝐻) Fn 𝐴
2423a1i 11 . . . . . 6 (𝜑 → (1st𝐻) Fn 𝐴)
25 ffn 6045 . . . . . . 7 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
263, 25syl 17 . . . . . 6 (𝜑𝐹 Fn 𝐴)
272a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → Fun 𝐻)
2813adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ran 𝐻 ⊆ (V × V))
29 simpr 477 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥𝐴)
3019, 1dmmpti 6023 . . . . . . . . . . 11 dom 𝐻 = 𝐴
3129, 30syl6eleqr 2712 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ dom 𝐻)
32 opfv 29448 . . . . . . . . . 10 (((Fun 𝐻 ∧ ran 𝐻 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐻) → (𝐻𝑥) = ⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩)
3327, 28, 31, 32syl21anc 1325 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐻𝑥) = ⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩)
341fvmpt2 6291 . . . . . . . . . 10 ((𝑥𝐴 ∧ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶)) → (𝐻𝑥) = ⟨(𝐹𝑥), (𝐺𝑥)⟩)
3529, 8, 34syl2anc 693 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐻𝑥) = ⟨(𝐹𝑥), (𝐺𝑥)⟩)
3633, 35eqtr3d 2658 . . . . . . . 8 ((𝜑𝑥𝐴) → ⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩ = ⟨(𝐹𝑥), (𝐺𝑥)⟩)
37 fvex 6201 . . . . . . . . 9 ((1st𝐻)‘𝑥) ∈ V
38 fvex 6201 . . . . . . . . 9 ((2nd𝐻)‘𝑥) ∈ V
3937, 38opth 4945 . . . . . . . 8 (⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩ = ⟨(𝐹𝑥), (𝐺𝑥)⟩ ↔ (((1st𝐻)‘𝑥) = (𝐹𝑥) ∧ ((2nd𝐻)‘𝑥) = (𝐺𝑥)))
4036, 39sylib 208 . . . . . . 7 ((𝜑𝑥𝐴) → (((1st𝐻)‘𝑥) = (𝐹𝑥) ∧ ((2nd𝐻)‘𝑥) = (𝐺𝑥)))
4140simpld 475 . . . . . 6 ((𝜑𝑥𝐴) → ((1st𝐻)‘𝑥) = (𝐹𝑥))
4224, 26, 41eqfnfvd 6314 . . . . 5 (𝜑 → (1st𝐻) = 𝐹)
4342cnveqd 5298 . . . 4 (𝜑(1st𝐻) = 𝐹)
4443imaeq1d 5465 . . 3 (𝜑 → ((1st𝐻) “ 𝑌) = (𝐹𝑌))
45 fo2nd 7189 . . . . . . . . 9 2nd :V–onto→V
46 fofn 6117 . . . . . . . . 9 (2nd :V–onto→V → 2nd Fn V)
4745, 46ax-mp 5 . . . . . . . 8 2nd Fn V
48 fnco 5999 . . . . . . . 8 ((2nd Fn V ∧ 𝐻 Fn 𝐴 ∧ ran 𝐻 ⊆ V) → (2nd𝐻) Fn 𝐴)
4947, 20, 21, 48mp3an 1424 . . . . . . 7 (2nd𝐻) Fn 𝐴
5049a1i 11 . . . . . 6 (𝜑 → (2nd𝐻) Fn 𝐴)
51 ffn 6045 . . . . . . 7 (𝐺:𝐴𝐶𝐺 Fn 𝐴)
525, 51syl 17 . . . . . 6 (𝜑𝐺 Fn 𝐴)
5340simprd 479 . . . . . 6 ((𝜑𝑥𝐴) → ((2nd𝐻)‘𝑥) = (𝐺𝑥))
5450, 52, 53eqfnfvd 6314 . . . . 5 (𝜑 → (2nd𝐻) = 𝐺)
5554cnveqd 5298 . . . 4 (𝜑(2nd𝐻) = 𝐺)
5655imaeq1d 5465 . . 3 (𝜑 → ((2nd𝐻) “ 𝑍) = (𝐺𝑍))
5744, 56ineq12d 3815 . 2 (𝜑 → (((1st𝐻) “ 𝑌) ∩ ((2nd𝐻) “ 𝑍)) = ((𝐹𝑌) ∩ (𝐺𝑍)))
5815, 57eqtrd 2656 1 (𝜑 → (𝐻 “ (𝑌 × 𝑍)) = ((𝐹𝑌) ∩ (𝐺𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  wss 3574  cop 4183  cmpt 4729   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  ccom 5118  Fun wfun 5882   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  1st c1st 7166  2nd c2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  mbfmco2  30327
  Copyright terms: Public domain W3C validator