| Step | Hyp | Ref
| Expression |
| 1 | | imasdsf1o.u |
. . . 4
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| 2 | | imasdsf1o.v |
. . . 4
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| 3 | | imasdsf1o.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
| 4 | | f1ofo 6144 |
. . . . 5
⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) |
| 5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| 6 | | imasdsf1o.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| 7 | | eqid 2622 |
. . . 4
⊢
(dist‘𝑅) =
(dist‘𝑅) |
| 8 | | imasdsf1o.d |
. . . 4
⊢ 𝐷 = (dist‘𝑈) |
| 9 | | f1of 6137 |
. . . . . 6
⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉⟶𝐵) |
| 10 | 3, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
| 11 | | imasdsf1o.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 12 | 10, 11 | ffvelrnd 6360 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐵) |
| 13 | | imasdsf1o.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 14 | 10, 13 | ffvelrnd 6360 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑌) ∈ 𝐵) |
| 15 | | imasdsf1o.s |
. . . 4
⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} |
| 16 | | imasdsf1o.e |
. . . 4
⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
| 17 | 1, 2, 5, 6, 7, 8, 12, 14, 15, 16 | imasdsval2 16176 |
. . 3
⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, <
)) |
| 18 | | imasdsf1o.t |
. . . 4
⊢ 𝑇 = ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
| 19 | 18 | infeq1i 8384 |
. . 3
⊢ inf(𝑇, ℝ*, < ) =
inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, <
) |
| 20 | 17, 19 | syl6eqr 2674 |
. 2
⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = inf(𝑇, ℝ*, <
)) |
| 21 | | xrsbas 19762 |
. . . . . . . . . . . 12
⊢
ℝ* =
(Base‘ℝ*𝑠) |
| 22 | | xrsadd 19763 |
. . . . . . . . . . . 12
⊢
+𝑒 =
(+g‘ℝ*𝑠) |
| 23 | | imasdsf1o.w |
. . . . . . . . . . . 12
⊢ 𝑊 =
(ℝ*𝑠 ↾s
(ℝ* ∖ {-∞})) |
| 24 | | xrsex 19761 |
. . . . . . . . . . . . 13
⊢
ℝ*𝑠 ∈ V |
| 25 | 24 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) →
ℝ*𝑠 ∈ V) |
| 26 | | fzfid 12772 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (1...𝑛) ∈ Fin) |
| 27 | | difss 3737 |
. . . . . . . . . . . . 13
⊢
(ℝ* ∖ {-∞}) ⊆
ℝ* |
| 28 | 27 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (ℝ* ∖
{-∞}) ⊆ ℝ*) |
| 29 | | imasdsf1o.m |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) |
| 30 | | xmetf 22134 |
. . . . . . . . . . . . . . . 16
⊢ (𝐸 ∈ (∞Met‘𝑉) → 𝐸:(𝑉 × 𝑉)⟶ℝ*) |
| 31 | | ffn 6045 |
. . . . . . . . . . . . . . . 16
⊢ (𝐸:(𝑉 × 𝑉)⟶ℝ* → 𝐸 Fn (𝑉 × 𝑉)) |
| 32 | 29, 30, 31 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐸 Fn (𝑉 × 𝑉)) |
| 33 | | xmetcl 22136 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉) → (𝑓𝐸𝑔) ∈
ℝ*) |
| 34 | | xmetge0 22149 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉) → 0 ≤ (𝑓𝐸𝑔)) |
| 35 | | ge0nemnf 12004 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓𝐸𝑔) ∈ ℝ* ∧ 0 ≤
(𝑓𝐸𝑔)) → (𝑓𝐸𝑔) ≠ -∞) |
| 36 | 33, 34, 35 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉) → (𝑓𝐸𝑔) ≠ -∞) |
| 37 | | eldifsn 4317 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓𝐸𝑔) ∈ (ℝ* ∖
{-∞}) ↔ ((𝑓𝐸𝑔) ∈ ℝ* ∧ (𝑓𝐸𝑔) ≠ -∞)) |
| 38 | 33, 36, 37 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉) → (𝑓𝐸𝑔) ∈ (ℝ* ∖
{-∞})) |
| 39 | 38 | 3expb 1266 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉)) → (𝑓𝐸𝑔) ∈ (ℝ* ∖
{-∞})) |
| 40 | 29, 39 | sylan 488 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉)) → (𝑓𝐸𝑔) ∈ (ℝ* ∖
{-∞})) |
| 41 | 40 | ralrimivva 2971 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑓 ∈ 𝑉 ∀𝑔 ∈ 𝑉 (𝑓𝐸𝑔) ∈ (ℝ* ∖
{-∞})) |
| 42 | | ffnov 6764 |
. . . . . . . . . . . . . . 15
⊢ (𝐸:(𝑉 × 𝑉)⟶(ℝ* ∖
{-∞}) ↔ (𝐸 Fn
(𝑉 × 𝑉) ∧ ∀𝑓 ∈ 𝑉 ∀𝑔 ∈ 𝑉 (𝑓𝐸𝑔) ∈ (ℝ* ∖
{-∞}))) |
| 43 | 32, 41, 42 | sylanbrc 698 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸:(𝑉 × 𝑉)⟶(ℝ* ∖
{-∞})) |
| 44 | 43 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝐸:(𝑉 × 𝑉)⟶(ℝ* ∖
{-∞})) |
| 45 | | ssrab2 3687 |
. . . . . . . . . . . . . . . . 17
⊢ {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ⊆ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) |
| 46 | 15, 45 | eqsstri 3635 |
. . . . . . . . . . . . . . . 16
⊢ 𝑆 ⊆ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) |
| 47 | 46 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ⊆ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛))) |
| 48 | 47 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑔 ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛))) |
| 49 | | elmapi 7879 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) → 𝑔:(1...𝑛)⟶(𝑉 × 𝑉)) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑔:(1...𝑛)⟶(𝑉 × 𝑉)) |
| 51 | | fco 6058 |
. . . . . . . . . . . . 13
⊢ ((𝐸:(𝑉 × 𝑉)⟶(ℝ* ∖
{-∞}) ∧ 𝑔:(1...𝑛)⟶(𝑉 × 𝑉)) → (𝐸 ∘ 𝑔):(1...𝑛)⟶(ℝ* ∖
{-∞})) |
| 52 | 44, 50, 51 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝐸 ∘ 𝑔):(1...𝑛)⟶(ℝ* ∖
{-∞})) |
| 53 | | 0re 10040 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
| 54 | | rexr 10085 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℝ → 0 ∈ ℝ*) |
| 55 | | renemnf 10088 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℝ → 0 ≠ -∞) |
| 56 | | eldifsn 4317 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
(ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ*
∧ 0 ≠ -∞)) |
| 57 | 54, 55, 56 | sylanbrc 698 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℝ → 0 ∈ (ℝ* ∖
{-∞})) |
| 58 | 53, 57 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 0 ∈ (ℝ*
∖ {-∞})) |
| 59 | | xaddid2 12073 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ*
→ (0 +𝑒 𝑥) = 𝑥) |
| 60 | | xaddid1 12072 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ*
→ (𝑥
+𝑒 0) = 𝑥) |
| 61 | 59, 60 | jca 554 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ*
→ ((0 +𝑒 𝑥) = 𝑥 ∧ (𝑥 +𝑒 0) = 𝑥)) |
| 62 | 61 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ 𝑥 ∈ ℝ*) → ((0
+𝑒 𝑥) =
𝑥 ∧ (𝑥 +𝑒 0) = 𝑥)) |
| 63 | 21, 22, 23, 25, 26, 28, 52, 58, 62 | gsumress 17276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) →
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)) = (𝑊 Σg (𝐸 ∘ 𝑔))) |
| 64 | 23, 21 | ressbas2 15931 |
. . . . . . . . . . . . 13
⊢
((ℝ* ∖ {-∞}) ⊆ ℝ*
→ (ℝ* ∖ {-∞}) = (Base‘𝑊)) |
| 65 | 27, 64 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(ℝ* ∖ {-∞}) = (Base‘𝑊) |
| 66 | 23 | xrs10 19785 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑊) |
| 67 | 23 | xrs1cmn 19786 |
. . . . . . . . . . . . 13
⊢ 𝑊 ∈ CMnd |
| 68 | 67 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑊 ∈ CMnd) |
| 69 | | c0ex 10034 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
| 70 | 69 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 0 ∈ V) |
| 71 | 52, 26, 70 | fdmfifsupp 8285 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝐸 ∘ 𝑔) finSupp 0) |
| 72 | 65, 66, 68, 26, 52, 71 | gsumcl 18316 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑊 Σg (𝐸 ∘ 𝑔)) ∈ (ℝ* ∖
{-∞})) |
| 73 | 63, 72 | eqeltrd 2701 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) →
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)) ∈ (ℝ* ∖
{-∞})) |
| 74 | 73 | eldifad 3586 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) →
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)) ∈
ℝ*) |
| 75 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) = (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
| 76 | 74, 75 | fmptd 6385 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))):𝑆⟶ℝ*) |
| 77 | | frn 6053 |
. . . . . . . 8
⊢ ((𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))):𝑆⟶ℝ* → ran
(𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ⊆
ℝ*) |
| 78 | 76, 77 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ⊆
ℝ*) |
| 79 | 78 | ralrimiva 2966 |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ⊆
ℝ*) |
| 80 | | iunss 4561 |
. . . . . 6
⊢ (∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ⊆ ℝ* ↔
∀𝑛 ∈ ℕ
ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ⊆
ℝ*) |
| 81 | 79, 80 | sylibr 224 |
. . . . 5
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ⊆
ℝ*) |
| 82 | 18, 81 | syl5eqss 3649 |
. . . 4
⊢ (𝜑 → 𝑇 ⊆
ℝ*) |
| 83 | | infxrcl 12163 |
. . . 4
⊢ (𝑇 ⊆ ℝ*
→ inf(𝑇,
ℝ*, < ) ∈ ℝ*) |
| 84 | 82, 83 | syl 17 |
. . 3
⊢ (𝜑 → inf(𝑇, ℝ*, < ) ∈
ℝ*) |
| 85 | | xmetcl 22136 |
. . . 4
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋𝐸𝑌) ∈
ℝ*) |
| 86 | 29, 11, 13, 85 | syl3anc 1326 |
. . 3
⊢ (𝜑 → (𝑋𝐸𝑌) ∈
ℝ*) |
| 87 | | 1nn 11031 |
. . . . . . 7
⊢ 1 ∈
ℕ |
| 88 | | 1ex 10035 |
. . . . . . . . . . . 12
⊢ 1 ∈
V |
| 89 | | opex 4932 |
. . . . . . . . . . . 12
⊢
〈𝑋, 𝑌〉 ∈ V |
| 90 | 88, 89 | f1osn 6176 |
. . . . . . . . . . 11
⊢ {〈1,
〈𝑋, 𝑌〉〉}:{1}–1-1-onto→{〈𝑋, 𝑌〉} |
| 91 | | f1of 6137 |
. . . . . . . . . . 11
⊢
({〈1, 〈𝑋,
𝑌〉〉}:{1}–1-1-onto→{〈𝑋, 𝑌〉} → {〈1, 〈𝑋, 𝑌〉〉}:{1}⟶{〈𝑋, 𝑌〉}) |
| 92 | 90, 91 | ax-mp 5 |
. . . . . . . . . 10
⊢ {〈1,
〈𝑋, 𝑌〉〉}:{1}⟶{〈𝑋, 𝑌〉} |
| 93 | | opelxpi 5148 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 〈𝑋, 𝑌〉 ∈ (𝑉 × 𝑉)) |
| 94 | 11, 13, 93 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝑉 × 𝑉)) |
| 95 | 94 | snssd 4340 |
. . . . . . . . . 10
⊢ (𝜑 → {〈𝑋, 𝑌〉} ⊆ (𝑉 × 𝑉)) |
| 96 | | fss 6056 |
. . . . . . . . . 10
⊢
(({〈1, 〈𝑋,
𝑌〉〉}:{1}⟶{〈𝑋, 𝑌〉} ∧ {〈𝑋, 𝑌〉} ⊆ (𝑉 × 𝑉)) → {〈1, 〈𝑋, 𝑌〉〉}:{1}⟶(𝑉 × 𝑉)) |
| 97 | 92, 95, 96 | sylancr 695 |
. . . . . . . . 9
⊢ (𝜑 → {〈1, 〈𝑋, 𝑌〉〉}:{1}⟶(𝑉 × 𝑉)) |
| 98 | 29 | elfvexd 6222 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑉 ∈ V) |
| 99 | | xpexg 6960 |
. . . . . . . . . . 11
⊢ ((𝑉 ∈ V ∧ 𝑉 ∈ V) → (𝑉 × 𝑉) ∈ V) |
| 100 | 98, 98, 99 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑉 × 𝑉) ∈ V) |
| 101 | | snex 4908 |
. . . . . . . . . 10
⊢ {1}
∈ V |
| 102 | | elmapg 7870 |
. . . . . . . . . 10
⊢ (((𝑉 × 𝑉) ∈ V ∧ {1} ∈ V) →
({〈1, 〈𝑋, 𝑌〉〉} ∈ ((𝑉 × 𝑉) ↑𝑚 {1}) ↔
{〈1, 〈𝑋, 𝑌〉〉}:{1}⟶(𝑉 × 𝑉))) |
| 103 | 100, 101,
102 | sylancl 694 |
. . . . . . . . 9
⊢ (𝜑 → ({〈1, 〈𝑋, 𝑌〉〉} ∈ ((𝑉 × 𝑉) ↑𝑚 {1}) ↔
{〈1, 〈𝑋, 𝑌〉〉}:{1}⟶(𝑉 × 𝑉))) |
| 104 | 97, 103 | mpbird 247 |
. . . . . . . 8
⊢ (𝜑 → {〈1, 〈𝑋, 𝑌〉〉} ∈ ((𝑉 × 𝑉) ↑𝑚
{1})) |
| 105 | | op1stg 7180 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
| 106 | 11, 13, 105 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘〈𝑋, 𝑌〉) = 𝑋) |
| 107 | 106 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(1st ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋)) |
| 108 | | op2ndg 7181 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
| 109 | 11, 13, 108 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → (2nd
‘〈𝑋, 𝑌〉) = 𝑌) |
| 110 | 109 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌)) |
| 111 | 107, 110 | jca 554 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘(1st ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌))) |
| 112 | 24 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 →
ℝ*𝑠 ∈ V) |
| 113 | | snfi 8038 |
. . . . . . . . . . 11
⊢ {1}
∈ Fin |
| 114 | 113 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → {1} ∈
Fin) |
| 115 | 27 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ*
∖ {-∞}) ⊆ ℝ*) |
| 116 | | xmetge0 22149 |
. . . . . . . . . . . . . . 15
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 0 ≤ (𝑋𝐸𝑌)) |
| 117 | 29, 11, 13, 116 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤ (𝑋𝐸𝑌)) |
| 118 | | ge0nemnf 12004 |
. . . . . . . . . . . . . 14
⊢ (((𝑋𝐸𝑌) ∈ ℝ* ∧ 0 ≤
(𝑋𝐸𝑌)) → (𝑋𝐸𝑌) ≠ -∞) |
| 119 | 86, 117, 118 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋𝐸𝑌) ≠ -∞) |
| 120 | | eldifsn 4317 |
. . . . . . . . . . . . 13
⊢ ((𝑋𝐸𝑌) ∈ (ℝ* ∖
{-∞}) ↔ ((𝑋𝐸𝑌) ∈ ℝ* ∧ (𝑋𝐸𝑌) ≠ -∞)) |
| 121 | 86, 119, 120 | sylanbrc 698 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋𝐸𝑌) ∈ (ℝ* ∖
{-∞})) |
| 122 | | fconst6g 6094 |
. . . . . . . . . . . 12
⊢ ((𝑋𝐸𝑌) ∈ (ℝ* ∖
{-∞}) → ({1} × {(𝑋𝐸𝑌)}):{1}⟶(ℝ* ∖
{-∞})) |
| 123 | 121, 122 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ({1} × {(𝑋𝐸𝑌)}):{1}⟶(ℝ* ∖
{-∞})) |
| 124 | | fcoconst 6401 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 Fn (𝑉 × 𝑉) ∧ 〈𝑋, 𝑌〉 ∈ (𝑉 × 𝑉)) → (𝐸 ∘ ({1} × {〈𝑋, 𝑌〉})) = ({1} × {(𝐸‘〈𝑋, 𝑌〉)})) |
| 125 | 32, 94, 124 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 ∘ ({1} × {〈𝑋, 𝑌〉})) = ({1} × {(𝐸‘〈𝑋, 𝑌〉)})) |
| 126 | 88, 89 | xpsn 6407 |
. . . . . . . . . . . . . 14
⊢ ({1}
× {〈𝑋, 𝑌〉}) = {〈1, 〈𝑋, 𝑌〉〉} |
| 127 | 126 | coeq2i 5282 |
. . . . . . . . . . . . 13
⊢ (𝐸 ∘ ({1} ×
{〈𝑋, 𝑌〉})) = (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}) |
| 128 | | df-ov 6653 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋𝐸𝑌) = (𝐸‘〈𝑋, 𝑌〉) |
| 129 | 128 | eqcomi 2631 |
. . . . . . . . . . . . . . 15
⊢ (𝐸‘〈𝑋, 𝑌〉) = (𝑋𝐸𝑌) |
| 130 | 129 | sneqi 4188 |
. . . . . . . . . . . . . 14
⊢ {(𝐸‘〈𝑋, 𝑌〉)} = {(𝑋𝐸𝑌)} |
| 131 | 130 | xpeq2i 5136 |
. . . . . . . . . . . . 13
⊢ ({1}
× {(𝐸‘〈𝑋, 𝑌〉)}) = ({1} × {(𝑋𝐸𝑌)}) |
| 132 | 125, 127,
131 | 3eqtr3g 2679 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}) = ({1} × {(𝑋𝐸𝑌)})) |
| 133 | 132 | feq1d 6030 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}):{1}⟶(ℝ*
∖ {-∞}) ↔ ({1} × {(𝑋𝐸𝑌)}):{1}⟶(ℝ* ∖
{-∞}))) |
| 134 | 123, 133 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}):{1}⟶(ℝ*
∖ {-∞})) |
| 135 | 53, 57 | mp1i 13 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
(ℝ* ∖ {-∞})) |
| 136 | 61 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → ((0
+𝑒 𝑥) =
𝑥 ∧ (𝑥 +𝑒 0) = 𝑥)) |
| 137 | 21, 22, 23, 112, 114, 115, 134, 135, 136 | gsumress 17276 |
. . . . . . . . 9
⊢ (𝜑 →
(ℝ*𝑠 Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉})) = (𝑊 Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}))) |
| 138 | | fconstmpt 5163 |
. . . . . . . . . . 11
⊢ ({1}
× {(𝑋𝐸𝑌)}) = (𝑗 ∈ {1} ↦ (𝑋𝐸𝑌)) |
| 139 | 132, 138 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}) = (𝑗 ∈ {1} ↦ (𝑋𝐸𝑌))) |
| 140 | 139 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉})) = (𝑊 Σg (𝑗 ∈ {1} ↦ (𝑋𝐸𝑌)))) |
| 141 | | cmnmnd 18208 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ CMnd → 𝑊 ∈ Mnd) |
| 142 | 67, 141 | mp1i 13 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ Mnd) |
| 143 | 87 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℕ) |
| 144 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ (𝑗 = 1 → (𝑋𝐸𝑌) = (𝑋𝐸𝑌)) |
| 145 | 65, 144 | gsumsn 18354 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Mnd ∧ 1 ∈
ℕ ∧ (𝑋𝐸𝑌) ∈ (ℝ* ∖
{-∞})) → (𝑊
Σg (𝑗 ∈ {1} ↦ (𝑋𝐸𝑌))) = (𝑋𝐸𝑌)) |
| 146 | 142, 143,
121, 145 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 Σg (𝑗 ∈ {1} ↦ (𝑋𝐸𝑌))) = (𝑋𝐸𝑌)) |
| 147 | 137, 140,
146 | 3eqtrrd 2661 |
. . . . . . . 8
⊢ (𝜑 → (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}))) |
| 148 | | fveq1 6190 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → (𝑔‘1) = ({〈1, 〈𝑋, 𝑌〉〉}‘1)) |
| 149 | 88, 89 | fvsn 6446 |
. . . . . . . . . . . . . . 15
⊢
({〈1, 〈𝑋,
𝑌〉〉}‘1) =
〈𝑋, 𝑌〉 |
| 150 | 148, 149 | syl6eq 2672 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → (𝑔‘1) = 〈𝑋, 𝑌〉) |
| 151 | 150 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → (1st
‘(𝑔‘1)) =
(1st ‘〈𝑋, 𝑌〉)) |
| 152 | 151 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → (𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘(1st ‘〈𝑋, 𝑌〉))) |
| 153 | 152 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ↔ (𝐹‘(1st ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋))) |
| 154 | 150 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → (2nd
‘(𝑔‘1)) =
(2nd ‘〈𝑋, 𝑌〉)) |
| 155 | 154 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘(2nd ‘〈𝑋, 𝑌〉))) |
| 156 | 155 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → ((𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌) ↔ (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌))) |
| 157 | 153, 156 | anbi12d 747 |
. . . . . . . . . 10
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → (((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ↔ ((𝐹‘(1st ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌)))) |
| 158 | | coeq2 5280 |
. . . . . . . . . . . 12
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → (𝐸 ∘ 𝑔) = (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉})) |
| 159 | 158 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} →
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)) = (ℝ*𝑠
Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}))) |
| 160 | 159 | eqeq2d 2632 |
. . . . . . . . . 10
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → ((𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)) ↔ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉})))) |
| 161 | 157, 160 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → ((((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))) ↔ (((𝐹‘(1st ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}))))) |
| 162 | 161 | rspcev 3309 |
. . . . . . . 8
⊢
(({〈1, 〈𝑋,
𝑌〉〉} ∈
((𝑉 × 𝑉) ↑𝑚
{1}) ∧ (((𝐹‘(1st ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉})))) → ∃𝑔 ∈ ((𝑉 × 𝑉) ↑𝑚 {1})(((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)))) |
| 163 | 104, 111,
147, 162 | syl12anc 1324 |
. . . . . . 7
⊢ (𝜑 → ∃𝑔 ∈ ((𝑉 × 𝑉) ↑𝑚 {1})(((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)))) |
| 164 | | ovex 6678 |
. . . . . . . . . 10
⊢ (𝑋𝐸𝑌) ∈ V |
| 165 | 75 | elrnmpt 5372 |
. . . . . . . . . 10
⊢ ((𝑋𝐸𝑌) ∈ V → ((𝑋𝐸𝑌) ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑔 ∈ 𝑆 (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)))) |
| 166 | 164, 165 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑋𝐸𝑌) ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑔 ∈ 𝑆 (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))) |
| 167 | 15 | rexeqi 3143 |
. . . . . . . . . . 11
⊢
(∃𝑔 ∈
𝑆 (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)) ↔ ∃𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))) |
| 168 | | fveq1 6190 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = 𝑔 → (ℎ‘1) = (𝑔‘1)) |
| 169 | 168 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = 𝑔 → (1st ‘(ℎ‘1)) = (1st
‘(𝑔‘1))) |
| 170 | 169 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑔 → (𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘(1st ‘(𝑔‘1)))) |
| 171 | 170 | eqeq1d 2624 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑔 → ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ↔ (𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋))) |
| 172 | | fveq1 6190 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = 𝑔 → (ℎ‘𝑛) = (𝑔‘𝑛)) |
| 173 | 172 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = 𝑔 → (2nd ‘(ℎ‘𝑛)) = (2nd ‘(𝑔‘𝑛))) |
| 174 | 173 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑔 → (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘(2nd ‘(𝑔‘𝑛)))) |
| 175 | 174 | eqeq1d 2624 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑔 → ((𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ↔ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌))) |
| 176 | | fveq1 6190 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = 𝑔 → (ℎ‘𝑖) = (𝑔‘𝑖)) |
| 177 | 176 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = 𝑔 → (2nd ‘(ℎ‘𝑖)) = (2nd ‘(𝑔‘𝑖))) |
| 178 | 177 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = 𝑔 → (𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(2nd ‘(𝑔‘𝑖)))) |
| 179 | | fveq1 6190 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = 𝑔 → (ℎ‘(𝑖 + 1)) = (𝑔‘(𝑖 + 1))) |
| 180 | 179 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = 𝑔 → (1st ‘(ℎ‘(𝑖 + 1))) = (1st ‘(𝑔‘(𝑖 + 1)))) |
| 181 | 180 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = 𝑔 → (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) |
| 182 | 178, 181 | eqeq12d 2637 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑔 → ((𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))) ↔ (𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))))) |
| 183 | 182 | ralbidv 2986 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑔 → (∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))) ↔ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))))) |
| 184 | 171, 175,
183 | 3anbi123d 1399 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑔 → (((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1))))) ↔ ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))))) |
| 185 | 184 | rexrab 3370 |
. . . . . . . . . . 11
⊢
(∃𝑔 ∈
{ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)) ↔ ∃𝑔 ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛))(((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)))) |
| 186 | 167, 185 | bitri 264 |
. . . . . . . . . 10
⊢
(∃𝑔 ∈
𝑆 (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)) ↔ ∃𝑔 ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛))(((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)))) |
| 187 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → (1...𝑛) = (1...1)) |
| 188 | | 1z 11407 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℤ |
| 189 | | fzsn 12383 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℤ → (1...1) = {1}) |
| 190 | 188, 189 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (1...1) =
{1} |
| 191 | 187, 190 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (1...𝑛) = {1}) |
| 192 | 191 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) = ((𝑉 × 𝑉) ↑𝑚
{1})) |
| 193 | | df-3an 1039 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) ↔ (((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌)) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))))) |
| 194 | | ral0 4076 |
. . . . . . . . . . . . . . . 16
⊢
∀𝑖 ∈
∅ (𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))) |
| 195 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → (𝑛 − 1) = (1 − 1)) |
| 196 | | 1m1e0 11089 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1
− 1) = 0 |
| 197 | 195, 196 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → (𝑛 − 1) = 0) |
| 198 | 197 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → (1...(𝑛 − 1)) =
(1...0)) |
| 199 | | fz10 12362 |
. . . . . . . . . . . . . . . . . 18
⊢ (1...0) =
∅ |
| 200 | 198, 199 | syl6eq 2672 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → (1...(𝑛 − 1)) =
∅) |
| 201 | 200 | raleqdv 3144 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 1 → (∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))) ↔ ∀𝑖 ∈ ∅ (𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))))) |
| 202 | 194, 201 | mpbiri 248 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 1 → ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) |
| 203 | 202 | biantrud 528 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 1 → (((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌)) ↔ (((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌)) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))))) |
| 204 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → (𝑔‘𝑛) = (𝑔‘1)) |
| 205 | 204 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → (2nd
‘(𝑔‘𝑛)) = (2nd
‘(𝑔‘1))) |
| 206 | 205 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 1 → (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘(2nd ‘(𝑔‘1)))) |
| 207 | 206 | eqeq1d 2624 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 1 → ((𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ↔ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌))) |
| 208 | 207 | anbi2d 740 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 1 → (((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌)) ↔ ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)))) |
| 209 | 203, 208 | bitr3d 270 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → ((((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌)) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) ↔ ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)))) |
| 210 | 193, 209 | syl5bb 272 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) ↔ ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)))) |
| 211 | 210 | anbi1d 741 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → ((((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))) ↔ (((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))))) |
| 212 | 192, 211 | rexeqbidv 3153 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → (∃𝑔 ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛))(((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑔 ∈ ((𝑉 × 𝑉) ↑𝑚 {1})(((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))))) |
| 213 | 186, 212 | syl5bb 272 |
. . . . . . . . 9
⊢ (𝑛 = 1 → (∃𝑔 ∈ 𝑆 (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)) ↔ ∃𝑔 ∈ ((𝑉 × 𝑉) ↑𝑚 {1})(((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))))) |
| 214 | 166, 213 | syl5bb 272 |
. . . . . . . 8
⊢ (𝑛 = 1 → ((𝑋𝐸𝑌) ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑔 ∈ ((𝑉 × 𝑉) ↑𝑚 {1})(((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))))) |
| 215 | 214 | rspcev 3309 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ ∃𝑔 ∈ ((𝑉 × 𝑉) ↑𝑚 {1})(((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)))) → ∃𝑛 ∈ ℕ (𝑋𝐸𝑌) ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
| 216 | 87, 163, 215 | sylancr 695 |
. . . . . 6
⊢ (𝜑 → ∃𝑛 ∈ ℕ (𝑋𝐸𝑌) ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
| 217 | | eliun 4524 |
. . . . . 6
⊢ ((𝑋𝐸𝑌) ∈ ∪
𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑛 ∈ ℕ (𝑋𝐸𝑌) ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
| 218 | 216, 217 | sylibr 224 |
. . . . 5
⊢ (𝜑 → (𝑋𝐸𝑌) ∈ ∪
𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
| 219 | 218, 18 | syl6eleqr 2712 |
. . . 4
⊢ (𝜑 → (𝑋𝐸𝑌) ∈ 𝑇) |
| 220 | | infxrlb 12164 |
. . . 4
⊢ ((𝑇 ⊆ ℝ*
∧ (𝑋𝐸𝑌) ∈ 𝑇) → inf(𝑇, ℝ*, < ) ≤ (𝑋𝐸𝑌)) |
| 221 | 82, 219, 220 | syl2anc 693 |
. . 3
⊢ (𝜑 → inf(𝑇, ℝ*, < ) ≤ (𝑋𝐸𝑌)) |
| 222 | 18 | eleq2i 2693 |
. . . . . . 7
⊢ (𝑝 ∈ 𝑇 ↔ 𝑝 ∈ ∪
𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
| 223 | | eliun 4524 |
. . . . . . 7
⊢ (𝑝 ∈ ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑛 ∈ ℕ 𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
| 224 | 222, 223 | bitri 264 |
. . . . . 6
⊢ (𝑝 ∈ 𝑇 ↔ ∃𝑛 ∈ ℕ 𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
| 225 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑝 ∈ V |
| 226 | 75 | elrnmpt 5372 |
. . . . . . . . 9
⊢ (𝑝 ∈ V → (𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑔 ∈ 𝑆 𝑝 = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)))) |
| 227 | 225, 226 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑔 ∈ 𝑆 𝑝 = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))) |
| 228 | 184, 15 | elrab2 3366 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ 𝑆 ↔ (𝑔 ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∧ ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))))) |
| 229 | 228 | simprbi 480 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 ∈ 𝑆 → ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))))) |
| 230 | 229 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))))) |
| 231 | 230 | simp2d 1074 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌)) |
| 232 | 3 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝐹:𝑉–1-1-onto→𝐵) |
| 233 | | f1of1 6136 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–1-1→𝐵) |
| 234 | 232, 233 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝐹:𝑉–1-1→𝐵) |
| 235 | | simplr 792 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑛 ∈ ℕ) |
| 236 | | elfz1end 12371 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ ↔ 𝑛 ∈ (1...𝑛)) |
| 237 | 235, 236 | sylib 208 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑛 ∈ (1...𝑛)) |
| 238 | 50, 237 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑔‘𝑛) ∈ (𝑉 × 𝑉)) |
| 239 | | xp2nd 7199 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔‘𝑛) ∈ (𝑉 × 𝑉) → (2nd ‘(𝑔‘𝑛)) ∈ 𝑉) |
| 240 | 238, 239 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (2nd ‘(𝑔‘𝑛)) ∈ 𝑉) |
| 241 | 13 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑌 ∈ 𝑉) |
| 242 | | f1fveq 6519 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑉–1-1→𝐵 ∧ ((2nd ‘(𝑔‘𝑛)) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ↔ (2nd ‘(𝑔‘𝑛)) = 𝑌)) |
| 243 | 234, 240,
241, 242 | syl12anc 1324 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ↔ (2nd ‘(𝑔‘𝑛)) = 𝑌)) |
| 244 | 231, 243 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (2nd ‘(𝑔‘𝑛)) = 𝑌) |
| 245 | 244 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸(2nd ‘(𝑔‘𝑛))) = (𝑋𝐸𝑌)) |
| 246 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 1 → (𝑚 ∈ (1...𝑛) ↔ 1 ∈ (1...𝑛))) |
| 247 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 1 → (𝑔‘𝑚) = (𝑔‘1)) |
| 248 | 247 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 1 → (2nd
‘(𝑔‘𝑚)) = (2nd
‘(𝑔‘1))) |
| 249 | 248 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 1 → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) = (𝑋𝐸(2nd ‘(𝑔‘1)))) |
| 250 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 1 → (1...𝑚) = (1...1)) |
| 251 | 250, 190 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 1 → (1...𝑚) = {1}) |
| 252 | 251 | reseq2d 5396 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 1 → ((𝐸 ∘ 𝑔) ↾ (1...𝑚)) = ((𝐸 ∘ 𝑔) ↾ {1})) |
| 253 | 252 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 1 → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) = (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1}))) |
| 254 | 249, 253 | breq12d 4666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 1 → ((𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) ↔ (𝑋𝐸(2nd ‘(𝑔‘1))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1})))) |
| 255 | 246, 254 | imbi12d 334 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 1 → ((𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚)))) ↔ (1 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘1))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1}))))) |
| 256 | 255 | imbi2d 330 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 1 → ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))))) ↔ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (1 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘1))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1})))))) |
| 257 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑥 → (𝑚 ∈ (1...𝑛) ↔ 𝑥 ∈ (1...𝑛))) |
| 258 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑥 → (𝑔‘𝑚) = (𝑔‘𝑥)) |
| 259 | 258 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑥 → (2nd ‘(𝑔‘𝑚)) = (2nd ‘(𝑔‘𝑥))) |
| 260 | 259 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑥 → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) = (𝑋𝐸(2nd ‘(𝑔‘𝑥)))) |
| 261 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑥 → (1...𝑚) = (1...𝑥)) |
| 262 | 261 | reseq2d 5396 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑥 → ((𝐸 ∘ 𝑔) ↾ (1...𝑚)) = ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) |
| 263 | 262 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑥 → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) = (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥)))) |
| 264 | 260, 263 | breq12d 4666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑥 → ((𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) ↔ (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))))) |
| 265 | 257, 264 | imbi12d 334 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑥 → ((𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚)))) ↔ (𝑥 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥)))))) |
| 266 | 265 | imbi2d 330 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑥 → ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))))) ↔ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑥 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))))))) |
| 267 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (𝑥 + 1) → (𝑚 ∈ (1...𝑛) ↔ (𝑥 + 1) ∈ (1...𝑛))) |
| 268 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = (𝑥 + 1) → (𝑔‘𝑚) = (𝑔‘(𝑥 + 1))) |
| 269 | 268 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = (𝑥 + 1) → (2nd ‘(𝑔‘𝑚)) = (2nd ‘(𝑔‘(𝑥 + 1)))) |
| 270 | 269 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = (𝑥 + 1) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) = (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1))))) |
| 271 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = (𝑥 + 1) → (1...𝑚) = (1...(𝑥 + 1))) |
| 272 | 271 | reseq2d 5396 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = (𝑥 + 1) → ((𝐸 ∘ 𝑔) ↾ (1...𝑚)) = ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))) |
| 273 | 272 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = (𝑥 + 1) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) = (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1))))) |
| 274 | 270, 273 | breq12d 4666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (𝑥 + 1) → ((𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) ↔ (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))))) |
| 275 | 267, 274 | imbi12d 334 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (𝑥 + 1) → ((𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚)))) ↔ ((𝑥 + 1) ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1))))))) |
| 276 | 275 | imbi2d 330 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝑥 + 1) → ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))))) ↔ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝑥 + 1) ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))))))) |
| 277 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → (𝑚 ∈ (1...𝑛) ↔ 𝑛 ∈ (1...𝑛))) |
| 278 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑛 → (𝑔‘𝑚) = (𝑔‘𝑛)) |
| 279 | 278 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑛 → (2nd ‘(𝑔‘𝑚)) = (2nd ‘(𝑔‘𝑛))) |
| 280 | 279 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) = (𝑋𝐸(2nd ‘(𝑔‘𝑛)))) |
| 281 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛)) |
| 282 | 281 | reseq2d 5396 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑛 → ((𝐸 ∘ 𝑔) ↾ (1...𝑚)) = ((𝐸 ∘ 𝑔) ↾ (1...𝑛))) |
| 283 | 282 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) = (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛)))) |
| 284 | 280, 283 | breq12d 4666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → ((𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) ↔ (𝑋𝐸(2nd ‘(𝑔‘𝑛))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛))))) |
| 285 | 277, 284 | imbi12d 334 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑛 → ((𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚)))) ↔ (𝑛 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑛))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛)))))) |
| 286 | 285 | imbi2d 330 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))))) ↔ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑛 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑛))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛))))))) |
| 287 | 29 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝐸 ∈ (∞Met‘𝑉)) |
| 288 | 11 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑋 ∈ 𝑉) |
| 289 | | nnuz 11723 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ℕ =
(ℤ≥‘1) |
| 290 | 235, 289 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑛 ∈
(ℤ≥‘1)) |
| 291 | | eluzfz1 12348 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈
(ℤ≥‘1) → 1 ∈ (1...𝑛)) |
| 292 | 290, 291 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 1 ∈ (1...𝑛)) |
| 293 | 50, 292 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑔‘1) ∈ (𝑉 × 𝑉)) |
| 294 | | xp2nd 7199 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔‘1) ∈ (𝑉 × 𝑉) → (2nd ‘(𝑔‘1)) ∈ 𝑉) |
| 295 | 293, 294 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (2nd ‘(𝑔‘1)) ∈ 𝑉) |
| 296 | | xmetcl 22136 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑋 ∈ 𝑉 ∧ (2nd ‘(𝑔‘1)) ∈ 𝑉) → (𝑋𝐸(2nd ‘(𝑔‘1))) ∈
ℝ*) |
| 297 | 287, 288,
295, 296 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸(2nd ‘(𝑔‘1))) ∈
ℝ*) |
| 298 | | xrleid 11983 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋𝐸(2nd ‘(𝑔‘1))) ∈ ℝ* →
(𝑋𝐸(2nd ‘(𝑔‘1))) ≤ (𝑋𝐸(2nd ‘(𝑔‘1)))) |
| 299 | 297, 298 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸(2nd ‘(𝑔‘1))) ≤ (𝑋𝐸(2nd ‘(𝑔‘1)))) |
| 300 | 142 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑊 ∈ Mnd) |
| 301 | 87 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 1 ∈ ℕ) |
| 302 | 44, 293 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝐸‘(𝑔‘1)) ∈ (ℝ*
∖ {-∞})) |
| 303 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 1 → (𝑔‘𝑗) = (𝑔‘1)) |
| 304 | 303 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 1 → (𝐸‘(𝑔‘𝑗)) = (𝐸‘(𝑔‘1))) |
| 305 | 65, 304 | gsumsn 18354 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊 ∈ Mnd ∧ 1 ∈
ℕ ∧ (𝐸‘(𝑔‘1)) ∈ (ℝ*
∖ {-∞})) → (𝑊 Σg (𝑗 ∈ {1} ↦ (𝐸‘(𝑔‘𝑗)))) = (𝐸‘(𝑔‘1))) |
| 306 | 300, 301,
302, 305 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑊 Σg (𝑗 ∈ {1} ↦ (𝐸‘(𝑔‘𝑗)))) = (𝐸‘(𝑔‘1))) |
| 307 | 287, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝐸:(𝑉 × 𝑉)⟶ℝ*) |
| 308 | | fcompt 6400 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐸:(𝑉 × 𝑉)⟶ℝ* ∧ 𝑔:(1...𝑛)⟶(𝑉 × 𝑉)) → (𝐸 ∘ 𝑔) = (𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗)))) |
| 309 | 307, 50, 308 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝐸 ∘ 𝑔) = (𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗)))) |
| 310 | 309 | reseq1d 5395 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝐸 ∘ 𝑔) ↾ {1}) = ((𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗))) ↾ {1})) |
| 311 | 292 | snssd 4340 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → {1} ⊆ (1...𝑛)) |
| 312 | 311 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗))) ↾ {1}) = (𝑗 ∈ {1} ↦ (𝐸‘(𝑔‘𝑗)))) |
| 313 | 310, 312 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝐸 ∘ 𝑔) ↾ {1}) = (𝑗 ∈ {1} ↦ (𝐸‘(𝑔‘𝑗)))) |
| 314 | 313 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1})) = (𝑊 Σg (𝑗 ∈ {1} ↦ (𝐸‘(𝑔‘𝑗))))) |
| 315 | | df-ov 6653 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋𝐸(2nd ‘(𝑔‘1))) = (𝐸‘〈𝑋, (2nd ‘(𝑔‘1))〉) |
| 316 | | 1st2nd2 7205 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑔‘1) ∈ (𝑉 × 𝑉) → (𝑔‘1) = 〈(1st
‘(𝑔‘1)),
(2nd ‘(𝑔‘1))〉) |
| 317 | 293, 316 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑔‘1) = 〈(1st
‘(𝑔‘1)),
(2nd ‘(𝑔‘1))〉) |
| 318 | 230 | simp1d 1073 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋)) |
| 319 | | xp1st 7198 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔‘1) ∈ (𝑉 × 𝑉) → (1st ‘(𝑔‘1)) ∈ 𝑉) |
| 320 | 293, 319 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (1st ‘(𝑔‘1)) ∈ 𝑉) |
| 321 | | f1fveq 6519 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹:𝑉–1-1→𝐵 ∧ ((1st ‘(𝑔‘1)) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ↔ (1st ‘(𝑔‘1)) = 𝑋)) |
| 322 | 234, 320,
288, 321 | syl12anc 1324 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ↔ (1st ‘(𝑔‘1)) = 𝑋)) |
| 323 | 318, 322 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (1st ‘(𝑔‘1)) = 𝑋) |
| 324 | 323 | opeq1d 4408 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 〈(1st ‘(𝑔‘1)), (2nd
‘(𝑔‘1))〉 =
〈𝑋, (2nd
‘(𝑔‘1))〉) |
| 325 | 317, 324 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 〈𝑋, (2nd ‘(𝑔‘1))〉 = (𝑔‘1)) |
| 326 | 325 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝐸‘〈𝑋, (2nd ‘(𝑔‘1))〉) = (𝐸‘(𝑔‘1))) |
| 327 | 315, 326 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸(2nd ‘(𝑔‘1))) = (𝐸‘(𝑔‘1))) |
| 328 | 306, 314,
327 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1})) = (𝑋𝐸(2nd ‘(𝑔‘1)))) |
| 329 | 299, 328 | breqtrrd 4681 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸(2nd ‘(𝑔‘1))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1}))) |
| 330 | 329 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (1 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘1))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1})))) |
| 331 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑥 ∈ ℕ) |
| 332 | 331, 289 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑥 ∈
(ℤ≥‘1)) |
| 333 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑥 + 1) ∈ (1...𝑛)) |
| 334 | | peano2fzr 12354 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈
(ℤ≥‘1) ∧ (𝑥 + 1) ∈ (1...𝑛)) → 𝑥 ∈ (1...𝑛)) |
| 335 | 332, 333,
334 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑥 ∈ (1...𝑛)) |
| 336 | 335 | expr 643 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ 𝑥 ∈ ℕ) → ((𝑥 + 1) ∈ (1...𝑛) → 𝑥 ∈ (1...𝑛))) |
| 337 | 336 | imim1d 82 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ 𝑥 ∈ ℕ) → ((𝑥 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥)))) → ((𝑥 + 1) ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥)))))) |
| 338 | 287 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝐸 ∈ (∞Met‘𝑉)) |
| 339 | 288 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑋 ∈ 𝑉) |
| 340 | 50 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑔:(1...𝑛)⟶(𝑉 × 𝑉)) |
| 341 | 340, 335 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑔‘𝑥) ∈ (𝑉 × 𝑉)) |
| 342 | | xp2nd 7199 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔‘𝑥) ∈ (𝑉 × 𝑉) → (2nd ‘(𝑔‘𝑥)) ∈ 𝑉) |
| 343 | 341, 342 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (2nd ‘(𝑔‘𝑥)) ∈ 𝑉) |
| 344 | | xmetcl 22136 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑋 ∈ 𝑉 ∧ (2nd ‘(𝑔‘𝑥)) ∈ 𝑉) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ∈
ℝ*) |
| 345 | 338, 339,
343, 344 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ∈
ℝ*) |
| 346 | 67 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑊 ∈ CMnd) |
| 347 | | fzfid 12772 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (1...𝑥) ∈ Fin) |
| 348 | 52 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝐸 ∘ 𝑔):(1...𝑛)⟶(ℝ* ∖
{-∞})) |
| 349 | | fzsuc 12388 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 ∈
(ℤ≥‘1) → (1...(𝑥 + 1)) = ((1...𝑥) ∪ {(𝑥 + 1)})) |
| 350 | 332, 349 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (1...(𝑥 + 1)) = ((1...𝑥) ∪ {(𝑥 + 1)})) |
| 351 | | elfzuz3 12339 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑥 + 1) ∈ (1...𝑛) → 𝑛 ∈ (ℤ≥‘(𝑥 + 1))) |
| 352 | 351 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑛 ∈ (ℤ≥‘(𝑥 + 1))) |
| 353 | | fzss2 12381 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 ∈
(ℤ≥‘(𝑥 + 1)) → (1...(𝑥 + 1)) ⊆ (1...𝑛)) |
| 354 | 352, 353 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (1...(𝑥 + 1)) ⊆ (1...𝑛)) |
| 355 | 350, 354 | eqsstr3d 3640 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((1...𝑥) ∪ {(𝑥 + 1)}) ⊆ (1...𝑛)) |
| 356 | 355 | unssad 3790 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (1...𝑥) ⊆ (1...𝑛)) |
| 357 | 348, 356 | fssresd 6071 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝐸 ∘ 𝑔) ↾ (1...𝑥)):(1...𝑥)⟶(ℝ* ∖
{-∞})) |
| 358 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 0 ∈ V) |
| 359 | 357, 347,
358 | fdmfifsupp 8285 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝐸 ∘ 𝑔) ↾ (1...𝑥)) finSupp 0) |
| 360 | 65, 66, 346, 347, 357, 359 | gsumcl 18316 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) ∈ (ℝ* ∖
{-∞})) |
| 361 | 360 | eldifad 3586 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) ∈
ℝ*) |
| 362 | 338, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝐸:(𝑉 × 𝑉)⟶ℝ*) |
| 363 | 340, 333 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑔‘(𝑥 + 1)) ∈ (𝑉 × 𝑉)) |
| 364 | 362, 363 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝐸‘(𝑔‘(𝑥 + 1))) ∈
ℝ*) |
| 365 | | xleadd1a 12083 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑋𝐸(2nd ‘(𝑔‘𝑥))) ∈ ℝ* ∧ (𝑊 Σg
((𝐸 ∘ 𝑔) ↾ (1...𝑥))) ∈ ℝ*
∧ (𝐸‘(𝑔‘(𝑥 + 1))) ∈ ℝ*) ∧
(𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥)))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1))))) |
| 366 | 365 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑋𝐸(2nd ‘(𝑔‘𝑥))) ∈ ℝ* ∧ (𝑊 Σg
((𝐸 ∘ 𝑔) ↾ (1...𝑥))) ∈ ℝ*
∧ (𝐸‘(𝑔‘(𝑥 + 1))) ∈ ℝ*) →
((𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))))) |
| 367 | 345, 361,
364, 366 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))))) |
| 368 | | xp2nd 7199 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑔‘(𝑥 + 1)) ∈ (𝑉 × 𝑉) → (2nd ‘(𝑔‘(𝑥 + 1))) ∈ 𝑉) |
| 369 | 363, 368 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (2nd ‘(𝑔‘(𝑥 + 1))) ∈ 𝑉) |
| 370 | | xmettri 22156 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑋 ∈ 𝑉 ∧ (2nd ‘(𝑔‘(𝑥 + 1))) ∈ 𝑉 ∧ (2nd ‘(𝑔‘𝑥)) ∈ 𝑉)) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 ((2nd
‘(𝑔‘𝑥))𝐸(2nd ‘(𝑔‘(𝑥 + 1)))))) |
| 371 | 338, 339,
369, 343, 370 | syl13anc 1328 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 ((2nd
‘(𝑔‘𝑥))𝐸(2nd ‘(𝑔‘(𝑥 + 1)))))) |
| 372 | | 1st2nd2 7205 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑔‘(𝑥 + 1)) ∈ (𝑉 × 𝑉) → (𝑔‘(𝑥 + 1)) = 〈(1st ‘(𝑔‘(𝑥 + 1))), (2nd ‘(𝑔‘(𝑥 + 1)))〉) |
| 373 | 363, 372 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑔‘(𝑥 + 1)) = 〈(1st ‘(𝑔‘(𝑥 + 1))), (2nd ‘(𝑔‘(𝑥 + 1)))〉) |
| 374 | | nnz 11399 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℤ) |
| 375 | 374 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑥 ∈ ℤ) |
| 376 | | eluzp1m1 11711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑥 ∈ ℤ ∧ 𝑛 ∈
(ℤ≥‘(𝑥 + 1))) → (𝑛 − 1) ∈
(ℤ≥‘𝑥)) |
| 377 | 375, 352,
376 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑛 − 1) ∈
(ℤ≥‘𝑥)) |
| 378 | | elfzuzb 12336 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 ∈ (1...(𝑛 − 1)) ↔ (𝑥 ∈ (ℤ≥‘1)
∧ (𝑛 − 1) ∈
(ℤ≥‘𝑥))) |
| 379 | 332, 377,
378 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑥 ∈ (1...(𝑛 − 1))) |
| 380 | 230 | simp3d 1075 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) |
| 381 | 380 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) |
| 382 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑖 = 𝑥 → (𝑔‘𝑖) = (𝑔‘𝑥)) |
| 383 | 382 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑖 = 𝑥 → (2nd ‘(𝑔‘𝑖)) = (2nd ‘(𝑔‘𝑥))) |
| 384 | 383 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑖 = 𝑥 → (𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(2nd ‘(𝑔‘𝑥)))) |
| 385 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑖 = 𝑥 → (𝑖 + 1) = (𝑥 + 1)) |
| 386 | 385 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑖 = 𝑥 → (𝑔‘(𝑖 + 1)) = (𝑔‘(𝑥 + 1))) |
| 387 | 386 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑖 = 𝑥 → (1st ‘(𝑔‘(𝑖 + 1))) = (1st ‘(𝑔‘(𝑥 + 1)))) |
| 388 | 387 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑖 = 𝑥 → (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))) = (𝐹‘(1st ‘(𝑔‘(𝑥 + 1))))) |
| 389 | 384, 388 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑖 = 𝑥 → ((𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))) ↔ (𝐹‘(2nd ‘(𝑔‘𝑥))) = (𝐹‘(1st ‘(𝑔‘(𝑥 + 1)))))) |
| 390 | 389 | rspcv 3305 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 ∈ (1...(𝑛 − 1)) → (∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))) → (𝐹‘(2nd ‘(𝑔‘𝑥))) = (𝐹‘(1st ‘(𝑔‘(𝑥 + 1)))))) |
| 391 | 379, 381,
390 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝐹‘(2nd ‘(𝑔‘𝑥))) = (𝐹‘(1st ‘(𝑔‘(𝑥 + 1))))) |
| 392 | 234 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝐹:𝑉–1-1→𝐵) |
| 393 | | xp1st 7198 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑔‘(𝑥 + 1)) ∈ (𝑉 × 𝑉) → (1st ‘(𝑔‘(𝑥 + 1))) ∈ 𝑉) |
| 394 | 363, 393 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (1st ‘(𝑔‘(𝑥 + 1))) ∈ 𝑉) |
| 395 | | f1fveq 6519 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐹:𝑉–1-1→𝐵 ∧ ((2nd ‘(𝑔‘𝑥)) ∈ 𝑉 ∧ (1st ‘(𝑔‘(𝑥 + 1))) ∈ 𝑉)) → ((𝐹‘(2nd ‘(𝑔‘𝑥))) = (𝐹‘(1st ‘(𝑔‘(𝑥 + 1)))) ↔ (2nd ‘(𝑔‘𝑥)) = (1st ‘(𝑔‘(𝑥 + 1))))) |
| 396 | 392, 343,
394, 395 | syl12anc 1324 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝐹‘(2nd ‘(𝑔‘𝑥))) = (𝐹‘(1st ‘(𝑔‘(𝑥 + 1)))) ↔ (2nd ‘(𝑔‘𝑥)) = (1st ‘(𝑔‘(𝑥 + 1))))) |
| 397 | 391, 396 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (2nd ‘(𝑔‘𝑥)) = (1st ‘(𝑔‘(𝑥 + 1)))) |
| 398 | 397 | opeq1d 4408 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 〈(2nd
‘(𝑔‘𝑥)), (2nd
‘(𝑔‘(𝑥 + 1)))〉 =
〈(1st ‘(𝑔‘(𝑥 + 1))), (2nd ‘(𝑔‘(𝑥 + 1)))〉) |
| 399 | 373, 398 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑔‘(𝑥 + 1)) = 〈(2nd ‘(𝑔‘𝑥)), (2nd ‘(𝑔‘(𝑥 + 1)))〉) |
| 400 | 399 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝐸‘(𝑔‘(𝑥 + 1))) = (𝐸‘〈(2nd ‘(𝑔‘𝑥)), (2nd ‘(𝑔‘(𝑥 + 1)))〉)) |
| 401 | | df-ov 6653 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((2nd ‘(𝑔‘𝑥))𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) = (𝐸‘〈(2nd ‘(𝑔‘𝑥)), (2nd ‘(𝑔‘(𝑥 + 1)))〉) |
| 402 | 400, 401 | syl6eqr 2674 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝐸‘(𝑔‘(𝑥 + 1))) = ((2nd ‘(𝑔‘𝑥))𝐸(2nd ‘(𝑔‘(𝑥 + 1))))) |
| 403 | 402 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) = ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 ((2nd
‘(𝑔‘𝑥))𝐸(2nd ‘(𝑔‘(𝑥 + 1)))))) |
| 404 | 371, 403 | breqtrrd 4681 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1))))) |
| 405 | | xmetcl 22136 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑋 ∈ 𝑉 ∧ (2nd ‘(𝑔‘(𝑥 + 1))) ∈ 𝑉) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ∈
ℝ*) |
| 406 | 338, 339,
369, 405 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ∈
ℝ*) |
| 407 | 345, 364 | xaddcld 12131 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ∈
ℝ*) |
| 408 | 361, 364 | xaddcld 12131 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ∈
ℝ*) |
| 409 | | xrletr 11989 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ∈ ℝ* ∧
((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ∈ ℝ* ∧
((𝑊
Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ∈ ℝ*) →
(((𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ∧ ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1))))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))))) |
| 410 | 406, 407,
408, 409 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (((𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ∧ ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1))))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))))) |
| 411 | 404, 410 | mpand 711 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))))) |
| 412 | 367, 411 | syld 47 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))))) |
| 413 | | xrex 11829 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
ℝ* ∈ V |
| 414 | 413, 27 | ssexi 4803 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(ℝ* ∖ {-∞}) ∈ V |
| 415 | 23, 22 | ressplusg 15993 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((ℝ* ∖ {-∞}) ∈ V →
+𝑒 = (+g‘𝑊)) |
| 416 | 414, 415 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
+𝑒 = (+g‘𝑊) |
| 417 | 44 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...𝑥)) → 𝐸:(𝑉 × 𝑉)⟶(ℝ* ∖
{-∞})) |
| 418 | | fzelp1 12393 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...𝑥) → 𝑗 ∈ (1...(𝑥 + 1))) |
| 419 | 50 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...(𝑥 + 1))) → 𝑔:(1...𝑛)⟶(𝑉 × 𝑉)) |
| 420 | 354 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...(𝑥 + 1))) → 𝑗 ∈ (1...𝑛)) |
| 421 | 419, 420 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...(𝑥 + 1))) → (𝑔‘𝑗) ∈ (𝑉 × 𝑉)) |
| 422 | 418, 421 | sylan2 491 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...𝑥)) → (𝑔‘𝑗) ∈ (𝑉 × 𝑉)) |
| 423 | 417, 422 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...𝑥)) → (𝐸‘(𝑔‘𝑗)) ∈ (ℝ* ∖
{-∞})) |
| 424 | | fzp1disj 12399 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((1...𝑥) ∩
{(𝑥 + 1)}) =
∅ |
| 425 | 424 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((1...𝑥) ∩ {(𝑥 + 1)}) = ∅) |
| 426 | | disjsn 4246 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((1...𝑥) ∩
{(𝑥 + 1)}) = ∅ ↔
¬ (𝑥 + 1) ∈
(1...𝑥)) |
| 427 | 425, 426 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ¬ (𝑥 + 1) ∈ (1...𝑥)) |
| 428 | 44 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝐸:(𝑉 × 𝑉)⟶(ℝ* ∖
{-∞})) |
| 429 | 428, 363 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝐸‘(𝑔‘(𝑥 + 1))) ∈ (ℝ* ∖
{-∞})) |
| 430 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = (𝑥 + 1) → (𝑔‘𝑗) = (𝑔‘(𝑥 + 1))) |
| 431 | 430 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = (𝑥 + 1) → (𝐸‘(𝑔‘𝑗)) = (𝐸‘(𝑔‘(𝑥 + 1)))) |
| 432 | 65, 416, 346, 347, 423, 333, 427, 429, 431 | gsumunsn 18359 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑊 Σg (𝑗 ∈ ((1...𝑥) ∪ {(𝑥 + 1)}) ↦ (𝐸‘(𝑔‘𝑗)))) = ((𝑊 Σg (𝑗 ∈ (1...𝑥) ↦ (𝐸‘(𝑔‘𝑗)))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1))))) |
| 433 | 309 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝐸 ∘ 𝑔) = (𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗)))) |
| 434 | 433, 350 | reseq12d 5397 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1))) = ((𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗))) ↾ ((1...𝑥) ∪ {(𝑥 + 1)}))) |
| 435 | 355 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗))) ↾ ((1...𝑥) ∪ {(𝑥 + 1)})) = (𝑗 ∈ ((1...𝑥) ∪ {(𝑥 + 1)}) ↦ (𝐸‘(𝑔‘𝑗)))) |
| 436 | 434, 435 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1))) = (𝑗 ∈ ((1...𝑥) ∪ {(𝑥 + 1)}) ↦ (𝐸‘(𝑔‘𝑗)))) |
| 437 | 436 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))) = (𝑊 Σg (𝑗 ∈ ((1...𝑥) ∪ {(𝑥 + 1)}) ↦ (𝐸‘(𝑔‘𝑗))))) |
| 438 | 433 | reseq1d 5395 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝐸 ∘ 𝑔) ↾ (1...𝑥)) = ((𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗))) ↾ (1...𝑥))) |
| 439 | 356 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗))) ↾ (1...𝑥)) = (𝑗 ∈ (1...𝑥) ↦ (𝐸‘(𝑔‘𝑗)))) |
| 440 | 438, 439 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝐸 ∘ 𝑔) ↾ (1...𝑥)) = (𝑗 ∈ (1...𝑥) ↦ (𝐸‘(𝑔‘𝑗)))) |
| 441 | 440 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) = (𝑊 Σg (𝑗 ∈ (1...𝑥) ↦ (𝐸‘(𝑔‘𝑗))))) |
| 442 | 441 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) = ((𝑊 Σg (𝑗 ∈ (1...𝑥) ↦ (𝐸‘(𝑔‘𝑗)))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1))))) |
| 443 | 432, 437,
442 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))) = ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1))))) |
| 444 | 443 | breq2d 4665 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))) ↔ (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))))) |
| 445 | 412, 444 | sylibrd 249 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))))) |
| 446 | 445 | expr 643 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ 𝑥 ∈ ℕ) → ((𝑥 + 1) ∈ (1...𝑛) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1))))))) |
| 447 | 446 | a2d 29 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ 𝑥 ∈ ℕ) → (((𝑥 + 1) ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥)))) → ((𝑥 + 1) ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1))))))) |
| 448 | 337, 447 | syld 47 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ 𝑥 ∈ ℕ) → ((𝑥 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥)))) → ((𝑥 + 1) ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1))))))) |
| 449 | 448 | expcom 451 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℕ → (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝑥 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥)))) → ((𝑥 + 1) ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))))))) |
| 450 | 449 | a2d 29 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℕ → ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑥 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))))) → (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝑥 + 1) ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))))))) |
| 451 | 256, 266,
276, 286, 330, 450 | nnind 11038 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑛 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑛))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛)))))) |
| 452 | 235, 451 | mpcom 38 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑛 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑛))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛))))) |
| 453 | 237, 452 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸(2nd ‘(𝑔‘𝑛))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛)))) |
| 454 | 245, 453 | eqbrtrrd 4677 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸𝑌) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛)))) |
| 455 | | ffn 6045 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 ∘ 𝑔):(1...𝑛)⟶(ℝ* ∖
{-∞}) → (𝐸
∘ 𝑔) Fn (1...𝑛)) |
| 456 | | fnresdm 6000 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 ∘ 𝑔) Fn (1...𝑛) → ((𝐸 ∘ 𝑔) ↾ (1...𝑛)) = (𝐸 ∘ 𝑔)) |
| 457 | 52, 455, 456 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝐸 ∘ 𝑔) ↾ (1...𝑛)) = (𝐸 ∘ 𝑔)) |
| 458 | 457 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛))) = (𝑊 Σg (𝐸 ∘ 𝑔))) |
| 459 | 63, 458 | eqtr4d 2659 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) →
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)) = (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛)))) |
| 460 | 454, 459 | breqtrrd 4681 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸𝑌) ≤
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
| 461 | | breq2 4657 |
. . . . . . . . . 10
⊢ (𝑝 =
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)) → ((𝑋𝐸𝑌) ≤ 𝑝 ↔ (𝑋𝐸𝑌) ≤
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
| 462 | 460, 461 | syl5ibrcom 237 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑝 = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)) → (𝑋𝐸𝑌) ≤ 𝑝)) |
| 463 | 462 | rexlimdva 3031 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∃𝑔 ∈ 𝑆 𝑝 = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)) → (𝑋𝐸𝑌) ≤ 𝑝)) |
| 464 | 227, 463 | syl5bi 232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) → (𝑋𝐸𝑌) ≤ 𝑝)) |
| 465 | 464 | rexlimdva 3031 |
. . . . . 6
⊢ (𝜑 → (∃𝑛 ∈ ℕ 𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) → (𝑋𝐸𝑌) ≤ 𝑝)) |
| 466 | 224, 465 | syl5bi 232 |
. . . . 5
⊢ (𝜑 → (𝑝 ∈ 𝑇 → (𝑋𝐸𝑌) ≤ 𝑝)) |
| 467 | 466 | ralrimiv 2965 |
. . . 4
⊢ (𝜑 → ∀𝑝 ∈ 𝑇 (𝑋𝐸𝑌) ≤ 𝑝) |
| 468 | | infxrgelb 12165 |
. . . . 5
⊢ ((𝑇 ⊆ ℝ*
∧ (𝑋𝐸𝑌) ∈ ℝ*) → ((𝑋𝐸𝑌) ≤ inf(𝑇, ℝ*, < ) ↔
∀𝑝 ∈ 𝑇 (𝑋𝐸𝑌) ≤ 𝑝)) |
| 469 | 82, 86, 468 | syl2anc 693 |
. . . 4
⊢ (𝜑 → ((𝑋𝐸𝑌) ≤ inf(𝑇, ℝ*, < ) ↔
∀𝑝 ∈ 𝑇 (𝑋𝐸𝑌) ≤ 𝑝)) |
| 470 | 467, 469 | mpbird 247 |
. . 3
⊢ (𝜑 → (𝑋𝐸𝑌) ≤ inf(𝑇, ℝ*, <
)) |
| 471 | 84, 86, 221, 470 | xrletrid 11986 |
. 2
⊢ (𝜑 → inf(𝑇, ℝ*, < ) = (𝑋𝐸𝑌)) |
| 472 | 20, 471 | eqtrd 2656 |
1
⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = (𝑋𝐸𝑌)) |