![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zfcndun | Structured version Visualization version GIF version |
Description: Axiom of Union ax-un 6949, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
zfcndun | ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axunnd 9418 | . 2 ⊢ ∃𝑦∀𝑧(∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
2 | elequ2 2004 | . . . . . . 7 ⊢ (𝑤 = 𝑦 → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦)) | |
3 | elequ1 1997 | . . . . . . 7 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) | |
4 | 2, 3 | anbi12d 747 | . . . . . 6 ⊢ (𝑤 = 𝑦 → ((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥))) |
5 | 4 | cbvexv 2275 | . . . . 5 ⊢ (∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)) |
6 | 5 | imbi1i 339 | . . . 4 ⊢ ((∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ (∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
7 | 6 | albii 1747 | . . 3 ⊢ (∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
8 | 7 | exbii 1774 | . 2 ⊢ (∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
9 | 1, 8 | mpbir 221 | 1 ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∀wal 1481 = wceq 1483 ∃wex 1704 ∈ wcel 1990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 ax-reg 8497 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-eprel 5029 df-fr 5073 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |