| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfcndun | Structured version Visualization version Unicode version | ||
| Description: Axiom of Union ax-un 6949, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| zfcndun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axunnd 9418 |
. 2
| |
| 2 | elequ2 2004 |
. . . . . . 7
| |
| 3 | elequ1 1997 |
. . . . . . 7
| |
| 4 | 2, 3 | anbi12d 747 |
. . . . . 6
|
| 5 | 4 | cbvexv 2275 |
. . . . 5
|
| 6 | 5 | imbi1i 339 |
. . . 4
|
| 7 | 6 | albii 1747 |
. . 3
|
| 8 | 7 | exbii 1774 |
. 2
|
| 9 | 1, 8 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-eprel 5029 df-fr 5073 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |