Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
aachba.c
Go to the documentation of this file.
1 /*
2  * Adaptec AAC series RAID controller driver
3  * (c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  * 2010 PMC-Sierra, Inc. ([email protected])
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING. If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/completion.h>
34 #include <linux/blkdev.h>
35 #include <asm/uaccess.h>
36 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
37 #include <linux/module.h>
38 
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 
44 #include "aacraid.h"
45 
46 /* values for inqd_pdt: Peripheral device type in plain English */
47 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
48 #define INQD_PDT_PROC 0x03 /* Processor device */
49 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
50 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
51 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
52 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
53 
54 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
55 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
56 
57 /*
58  * Sense codes
59  */
60 
61 #define SENCODE_NO_SENSE 0x00
62 #define SENCODE_END_OF_DATA 0x00
63 #define SENCODE_BECOMING_READY 0x04
64 #define SENCODE_INIT_CMD_REQUIRED 0x04
65 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
66 #define SENCODE_INVALID_COMMAND 0x20
67 #define SENCODE_LBA_OUT_OF_RANGE 0x21
68 #define SENCODE_INVALID_CDB_FIELD 0x24
69 #define SENCODE_LUN_NOT_SUPPORTED 0x25
70 #define SENCODE_INVALID_PARAM_FIELD 0x26
71 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
72 #define SENCODE_PARAM_VALUE_INVALID 0x26
73 #define SENCODE_RESET_OCCURRED 0x29
74 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
75 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
76 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
77 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
78 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
79 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
80 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
81 #define SENCODE_OVERLAPPED_COMMAND 0x4E
82 
83 /*
84  * Additional sense codes
85  */
86 
87 #define ASENCODE_NO_SENSE 0x00
88 #define ASENCODE_END_OF_DATA 0x05
89 #define ASENCODE_BECOMING_READY 0x01
90 #define ASENCODE_INIT_CMD_REQUIRED 0x02
91 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
92 #define ASENCODE_INVALID_COMMAND 0x00
93 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
94 #define ASENCODE_INVALID_CDB_FIELD 0x00
95 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
96 #define ASENCODE_INVALID_PARAM_FIELD 0x00
97 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
98 #define ASENCODE_PARAM_VALUE_INVALID 0x02
99 #define ASENCODE_RESET_OCCURRED 0x00
100 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
101 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
102 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
103 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
104 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
105 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
106 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
107 #define ASENCODE_OVERLAPPED_COMMAND 0x00
108 
109 #define BYTE0(x) (unsigned char)(x)
110 #define BYTE1(x) (unsigned char)((x) >> 8)
111 #define BYTE2(x) (unsigned char)((x) >> 16)
112 #define BYTE3(x) (unsigned char)((x) >> 24)
113 
114 /*------------------------------------------------------------------------------
115  * S T R U C T S / T Y P E D E F S
116  *----------------------------------------------------------------------------*/
117 /* SCSI inquiry data */
118 struct inquiry_data {
119  u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
120  u8 inqd_dtq; /* RMB | Device Type Qualifier */
121  u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
122  u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
123  u8 inqd_len; /* Additional length (n-4) */
124  u8 inqd_pad1[2];/* Reserved - must be zero */
125  u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
126  u8 inqd_vid[8]; /* Vendor ID */
127  u8 inqd_pid[16];/* Product ID */
128  u8 inqd_prl[4]; /* Product Revision Level */
129 };
130 
131 /*
132  * M O D U L E G L O B A L S
133  */
134 
135 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
136 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
137 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
138 static unsigned long aac_build_sgraw2(struct scsi_cmnd *scsicmd, struct aac_raw_io2 *rio2, int sg_max);
139 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new);
140 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
141 #ifdef AAC_DETAILED_STATUS_INFO
142 static char *aac_get_status_string(u32 status);
143 #endif
144 
145 /*
146  * Non dasd selection is handled entirely in aachba now
147  */
148 
149 static int nondasd = -1;
150 static int aac_cache = 2; /* WCE=0 to avoid performance problems */
151 static int dacmode = -1;
153 int aac_commit = -1;
154 int startup_timeout = 180;
155 int aif_timeout = 120;
156 int aac_sync_mode; /* Only Sync. transfer - disabled */
157 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */
158 
160 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
161  " 0=off, 1=on");
163 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
164  " 0=off, 1=on");
165 module_param(nondasd, int, S_IRUGO|S_IWUSR);
166 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
167  " 0=off, 1=on");
168 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
169 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
170  "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
171  "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
172  "\tbit 2 - Disable only if Battery is protecting Cache");
173 module_param(dacmode, int, S_IRUGO|S_IWUSR);
174 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
175  " 0=off, 1=on");
177 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
178  " adapter for foreign arrays.\n"
179  "This is typically needed in systems that do not have a BIOS."
180  " 0=off, 1=on");
182 MODULE_PARM_DESC(msi, "IRQ handling."
183  " 0=PIC(default), 1=MSI, 2=MSI-X(unsupported, uses MSI)");
185 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
186  " adapter to have it's kernel up and\n"
187  "running. This is typically adjusted for large systems that do not"
188  " have a BIOS.");
190 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
191  " applications to pick up AIFs before\n"
192  "deregistering them. This is typically adjusted for heavily burdened"
193  " systems.");
194 
195 int numacb = -1;
197 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
198  " blocks (FIB) allocated. Valid values are 512 and down. Default is"
199  " to use suggestion from Firmware.");
200 
201 int acbsize = -1;
203 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
204  " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
205  " suggestion from Firmware.");
206 
207 int update_interval = 30 * 60;
209 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
210  " updates issued to adapter.");
211 
212 int check_interval = 24 * 60 * 60;
213 module_param(check_interval, int, S_IRUGO|S_IWUSR);
214 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
215  " checks.");
216 
219 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
220  " adapter. a value of -1 forces the reset to adapters programmed to"
221  " ignore it.");
222 
225 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
226  " -1=protect 0=off, 1=on");
227 
230 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
231 
232 int aac_wwn = 1;
234 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
235  "\t0 - Disable\n"
236  "\t1 - Array Meta Data Signature (default)\n"
237  "\t2 - Adapter Serial Number");
238 
239 
240 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
241  struct fib *fibptr) {
242  struct scsi_device *device;
243 
244  if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
245  dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
246  aac_fib_complete(fibptr);
247  aac_fib_free(fibptr);
248  return 0;
249  }
250  scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
251  device = scsicmd->device;
252  if (unlikely(!device || !scsi_device_online(device))) {
253  dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
254  aac_fib_complete(fibptr);
255  aac_fib_free(fibptr);
256  return 0;
257  }
258  return 1;
259 }
260 
267 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
268 {
269  int status = 0;
270  struct fib * fibptr;
271 
272  if (!(fibptr = aac_fib_alloc(dev)))
273  return -ENOMEM;
274 
275  aac_fib_init(fibptr);
276  {
277  struct aac_get_config_status *dinfo;
278  dinfo = (struct aac_get_config_status *) fib_data(fibptr);
279 
282  dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
283  }
284 
286  fibptr,
287  sizeof (struct aac_get_config_status),
288  FsaNormal,
289  1, 1,
290  NULL, NULL);
291  if (status < 0) {
292  printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
293  } else {
294  struct aac_get_config_status_resp *reply
295  = (struct aac_get_config_status_resp *) fib_data(fibptr);
297  "aac_get_config_status: response=%d status=%d action=%d\n",
298  le32_to_cpu(reply->response),
299  le32_to_cpu(reply->status),
300  le32_to_cpu(reply->data.action)));
301  if ((le32_to_cpu(reply->response) != ST_OK) ||
302  (le32_to_cpu(reply->status) != CT_OK) ||
303  (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
304  printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
305  status = -EINVAL;
306  }
307  }
308  /* Do not set XferState to zero unless receives a response from F/W */
309  if (status >= 0)
310  aac_fib_complete(fibptr);
311 
312  /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
313  if (status >= 0) {
314  if ((aac_commit == 1) || commit_flag) {
315  struct aac_commit_config * dinfo;
316  aac_fib_init(fibptr);
317  dinfo = (struct aac_commit_config *) fib_data(fibptr);
318 
321 
323  fibptr,
324  sizeof (struct aac_commit_config),
325  FsaNormal,
326  1, 1,
327  NULL, NULL);
328  /* Do not set XferState to zero unless
329  * receives a response from F/W */
330  if (status >= 0)
331  aac_fib_complete(fibptr);
332  } else if (aac_commit == 0) {
334  "aac_get_config_status: Foreign device configurations are being ignored\n");
335  }
336  }
337  /* FIB should be freed only after getting the response from the F/W */
338  if (status != -ERESTARTSYS)
339  aac_fib_free(fibptr);
340  return status;
341 }
342 
343 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
344 {
345  char inq_data;
346  scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data));
347  if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
348  inq_data &= 0xdf;
349  scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
350  }
351 }
352 
360 {
361  struct fsa_dev_info *fsa_dev_ptr;
362  u32 index;
363  int status = 0;
364  struct fib * fibptr;
365  struct aac_get_container_count *dinfo;
366  struct aac_get_container_count_resp *dresp;
367  int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
368 
369  if (!(fibptr = aac_fib_alloc(dev)))
370  return -ENOMEM;
371 
372  aac_fib_init(fibptr);
373  dinfo = (struct aac_get_container_count *) fib_data(fibptr);
376 
378  fibptr,
379  sizeof (struct aac_get_container_count),
380  FsaNormal,
381  1, 1,
382  NULL, NULL);
383  if (status >= 0) {
384  dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
385  maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
386  aac_fib_complete(fibptr);
387  }
388  /* FIB should be freed only after getting the response from the F/W */
389  if (status != -ERESTARTSYS)
390  aac_fib_free(fibptr);
391 
392  if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
393  maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
394  fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
395  GFP_KERNEL);
396  if (!fsa_dev_ptr)
397  return -ENOMEM;
398 
399  dev->fsa_dev = fsa_dev_ptr;
400  dev->maximum_num_containers = maximum_num_containers;
401 
402  for (index = 0; index < dev->maximum_num_containers; ) {
403  fsa_dev_ptr[index].devname[0] = '\0';
404 
405  status = aac_probe_container(dev, index);
406 
407  if (status < 0) {
408  printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
409  break;
410  }
411 
412  /*
413  * If there are no more containers, then stop asking.
414  */
415  if (++index >= status)
416  break;
417  }
418  return status;
419 }
420 
421 static void get_container_name_callback(void *context, struct fib * fibptr)
422 {
423  struct aac_get_name_resp * get_name_reply;
424  struct scsi_cmnd * scsicmd;
425 
426  scsicmd = (struct scsi_cmnd *) context;
427 
428  if (!aac_valid_context(scsicmd, fibptr))
429  return;
430 
431  dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
432  BUG_ON(fibptr == NULL);
433 
434  get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
435  /* Failure is irrelevant, using default value instead */
436  if ((le32_to_cpu(get_name_reply->status) == CT_OK)
437  && (get_name_reply->data[0] != '\0')) {
438  char *sp = get_name_reply->data;
439  sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
440  while (*sp == ' ')
441  ++sp;
442  if (*sp) {
443  struct inquiry_data inq;
444  char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
445  int count = sizeof(d);
446  char *dp = d;
447  do {
448  *dp++ = (*sp) ? *sp++ : ' ';
449  } while (--count > 0);
450 
451  scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
452  memcpy(inq.inqd_pid, d, sizeof(d));
453  scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
454  }
455  }
456 
457  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
458 
459  aac_fib_complete(fibptr);
460  aac_fib_free(fibptr);
461  scsicmd->scsi_done(scsicmd);
462 }
463 
467 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
468 {
469  int status;
470  struct aac_get_name *dinfo;
471  struct fib * cmd_fibcontext;
472  struct aac_dev * dev;
473 
474  dev = (struct aac_dev *)scsicmd->device->host->hostdata;
475 
476  if (!(cmd_fibcontext = aac_fib_alloc(dev)))
477  return -ENOMEM;
478 
479  aac_fib_init(cmd_fibcontext);
480  dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
481 
483  dinfo->type = cpu_to_le32(CT_READ_NAME);
484  dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
485  dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
486 
488  cmd_fibcontext,
489  sizeof (struct aac_get_name),
490  FsaNormal,
491  0, 1,
492  (fib_callback)get_container_name_callback,
493  (void *) scsicmd);
494 
495  /*
496  * Check that the command queued to the controller
497  */
498  if (status == -EINPROGRESS) {
499  scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
500  return 0;
501  }
502 
503  printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
504  aac_fib_complete(cmd_fibcontext);
505  aac_fib_free(cmd_fibcontext);
506  return -1;
507 }
508 
509 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
510 {
511  struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
512 
513  if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
514  return aac_scsi_cmd(scsicmd);
515 
516  scsicmd->result = DID_NO_CONNECT << 16;
517  scsicmd->scsi_done(scsicmd);
518  return 0;
519 }
520 
521 static void _aac_probe_container2(void * context, struct fib * fibptr)
522 {
523  struct fsa_dev_info *fsa_dev_ptr;
524  int (*callback)(struct scsi_cmnd *);
525  struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
526 
527 
528  if (!aac_valid_context(scsicmd, fibptr))
529  return;
530 
531  scsicmd->SCp.Status = 0;
532  fsa_dev_ptr = fibptr->dev->fsa_dev;
533  if (fsa_dev_ptr) {
534  struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
535  fsa_dev_ptr += scmd_id(scsicmd);
536 
537  if ((le32_to_cpu(dresp->status) == ST_OK) &&
538  (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
539  (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
540  fsa_dev_ptr->valid = 1;
541  /* sense_key holds the current state of the spin-up */
542  if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
543  fsa_dev_ptr->sense_data.sense_key = NOT_READY;
544  else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
545  fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
546  fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
547  fsa_dev_ptr->size
548  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
549  (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
550  fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
551  }
552  if ((fsa_dev_ptr->valid & 1) == 0)
553  fsa_dev_ptr->valid = 0;
554  scsicmd->SCp.Status = le32_to_cpu(dresp->count);
555  }
556  aac_fib_complete(fibptr);
557  aac_fib_free(fibptr);
558  callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
559  scsicmd->SCp.ptr = NULL;
560  (*callback)(scsicmd);
561  return;
562 }
563 
564 static void _aac_probe_container1(void * context, struct fib * fibptr)
565 {
566  struct scsi_cmnd * scsicmd;
567  struct aac_mount * dresp;
568  struct aac_query_mount *dinfo;
569  int status;
570 
571  dresp = (struct aac_mount *) fib_data(fibptr);
572  dresp->mnt[0].capacityhigh = 0;
573  if ((le32_to_cpu(dresp->status) != ST_OK) ||
574  (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
575  _aac_probe_container2(context, fibptr);
576  return;
577  }
578  scsicmd = (struct scsi_cmnd *) context;
579 
580  if (!aac_valid_context(scsicmd, fibptr))
581  return;
582 
583  aac_fib_init(fibptr);
584 
585  dinfo = (struct aac_query_mount *)fib_data(fibptr);
586 
588  dinfo->count = cpu_to_le32(scmd_id(scsicmd));
589  dinfo->type = cpu_to_le32(FT_FILESYS);
590 
592  fibptr,
593  sizeof(struct aac_query_mount),
594  FsaNormal,
595  0, 1,
596  _aac_probe_container2,
597  (void *) scsicmd);
598  /*
599  * Check that the command queued to the controller
600  */
601  if (status == -EINPROGRESS)
602  scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
603  else if (status < 0) {
604  /* Inherit results from VM_NameServe, if any */
605  dresp->status = cpu_to_le32(ST_OK);
606  _aac_probe_container2(context, fibptr);
607  }
608 }
609 
610 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
611 {
612  struct fib * fibptr;
613  int status = -ENOMEM;
614 
615  if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
616  struct aac_query_mount *dinfo;
617 
618  aac_fib_init(fibptr);
619 
620  dinfo = (struct aac_query_mount *)fib_data(fibptr);
621 
622  dinfo->command = cpu_to_le32(VM_NameServe);
623  dinfo->count = cpu_to_le32(scmd_id(scsicmd));
624  dinfo->type = cpu_to_le32(FT_FILESYS);
625  scsicmd->SCp.ptr = (char *)callback;
626 
628  fibptr,
629  sizeof(struct aac_query_mount),
630  FsaNormal,
631  0, 1,
632  _aac_probe_container1,
633  (void *) scsicmd);
634  /*
635  * Check that the command queued to the controller
636  */
637  if (status == -EINPROGRESS) {
638  scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
639  return 0;
640  }
641  if (status < 0) {
642  scsicmd->SCp.ptr = NULL;
643  aac_fib_complete(fibptr);
644  aac_fib_free(fibptr);
645  }
646  }
647  if (status < 0) {
648  struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
649  if (fsa_dev_ptr) {
650  fsa_dev_ptr += scmd_id(scsicmd);
651  if ((fsa_dev_ptr->valid & 1) == 0) {
652  fsa_dev_ptr->valid = 0;
653  return (*callback)(scsicmd);
654  }
655  }
656  }
657  return status;
658 }
659 
668 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
669 {
670  scsicmd->device = NULL;
671  return 0;
672 }
673 
674 int aac_probe_container(struct aac_dev *dev, int cid)
675 {
676  struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
677  struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
678  int status;
679 
680  if (!scsicmd || !scsidev) {
681  kfree(scsicmd);
682  kfree(scsidev);
683  return -ENOMEM;
684  }
685  scsicmd->list.next = NULL;
686  scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
687 
688  scsicmd->device = scsidev;
689  scsidev->sdev_state = 0;
690  scsidev->id = cid;
691  scsidev->host = dev->scsi_host_ptr;
692 
693  if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
694  while (scsicmd->device == scsidev)
695  schedule();
696  kfree(scsidev);
697  status = scsicmd->SCp.Status;
698  kfree(scsicmd);
699  return status;
700 }
701 
702 /* Local Structure to set SCSI inquiry data strings */
703 struct scsi_inq {
704  char vid[8]; /* Vendor ID */
705  char pid[16]; /* Product ID */
706  char prl[4]; /* Product Revision Level */
707 };
708 
718 static void inqstrcpy(char *a, char *b)
719 {
720 
721  while (*a != (char)0)
722  *b++ = *a++;
723 }
724 
725 static char *container_types[] = {
726  "None",
727  "Volume",
728  "Mirror",
729  "Stripe",
730  "RAID5",
731  "SSRW",
732  "SSRO",
733  "Morph",
734  "Legacy",
735  "RAID4",
736  "RAID10",
737  "RAID00",
738  "V-MIRRORS",
739  "PSEUDO R4",
740  "RAID50",
741  "RAID5D",
742  "RAID5D0",
743  "RAID1E",
744  "RAID6",
745  "RAID60",
746  "Unknown"
747 };
748 
749 char * get_container_type(unsigned tindex)
750 {
751  if (tindex >= ARRAY_SIZE(container_types))
752  tindex = ARRAY_SIZE(container_types) - 1;
753  return container_types[tindex];
754 }
755 
756 /* Function: setinqstr
757  *
758  * Arguments: [1] pointer to void [1] int
759  *
760  * Purpose: Sets SCSI inquiry data strings for vendor, product
761  * and revision level. Allows strings to be set in platform dependent
762  * files instead of in OS dependent driver source.
763  */
764 
765 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
766 {
767  struct scsi_inq *str;
768 
769  str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
770  memset(str, ' ', sizeof(*str));
771 
772  if (dev->supplement_adapter_info.AdapterTypeText[0]) {
773  char * cp = dev->supplement_adapter_info.AdapterTypeText;
774  int c;
775  if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
776  inqstrcpy("SMC", str->vid);
777  else {
778  c = sizeof(str->vid);
779  while (*cp && *cp != ' ' && --c)
780  ++cp;
781  c = *cp;
782  *cp = '\0';
783  inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
784  str->vid);
785  *cp = c;
786  while (*cp && *cp != ' ')
787  ++cp;
788  }
789  while (*cp == ' ')
790  ++cp;
791  /* last six chars reserved for vol type */
792  c = 0;
793  if (strlen(cp) > sizeof(str->pid)) {
794  c = cp[sizeof(str->pid)];
795  cp[sizeof(str->pid)] = '\0';
796  }
797  inqstrcpy (cp, str->pid);
798  if (c)
799  cp[sizeof(str->pid)] = c;
800  } else {
802 
803  inqstrcpy (mp->vname, str->vid);
804  /* last six chars reserved for vol type */
805  inqstrcpy (mp->model, str->pid);
806  }
807 
808  if (tindex < ARRAY_SIZE(container_types)){
809  char *findit = str->pid;
810 
811  for ( ; *findit != ' '; findit++); /* walk till we find a space */
812  /* RAID is superfluous in the context of a RAID device */
813  if (memcmp(findit-4, "RAID", 4) == 0)
814  *(findit -= 4) = ' ';
815  if (((findit - str->pid) + strlen(container_types[tindex]))
816  < (sizeof(str->pid) + sizeof(str->prl)))
817  inqstrcpy (container_types[tindex], findit + 1);
818  }
819  inqstrcpy ("V1.0", str->prl);
820 }
821 
822 static void get_container_serial_callback(void *context, struct fib * fibptr)
823 {
824  struct aac_get_serial_resp * get_serial_reply;
825  struct scsi_cmnd * scsicmd;
826 
827  BUG_ON(fibptr == NULL);
828 
829  scsicmd = (struct scsi_cmnd *) context;
830  if (!aac_valid_context(scsicmd, fibptr))
831  return;
832 
833  get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
834  /* Failure is irrelevant, using default value instead */
835  if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
836  char sp[13];
837  /* EVPD bit set */
838  sp[0] = INQD_PDT_DA;
839  sp[1] = scsicmd->cmnd[2];
840  sp[2] = 0;
841  sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
842  le32_to_cpu(get_serial_reply->uid));
843  scsi_sg_copy_from_buffer(scsicmd, sp, sizeof(sp));
844  }
845 
846  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
847 
848  aac_fib_complete(fibptr);
849  aac_fib_free(fibptr);
850  scsicmd->scsi_done(scsicmd);
851 }
852 
856 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
857 {
858  int status;
859  struct aac_get_serial *dinfo;
860  struct fib * cmd_fibcontext;
861  struct aac_dev * dev;
862 
863  dev = (struct aac_dev *)scsicmd->device->host->hostdata;
864 
865  if (!(cmd_fibcontext = aac_fib_alloc(dev)))
866  return -ENOMEM;
867 
868  aac_fib_init(cmd_fibcontext);
869  dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
870 
873  dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
874 
876  cmd_fibcontext,
877  sizeof (struct aac_get_serial),
878  FsaNormal,
879  0, 1,
880  (fib_callback) get_container_serial_callback,
881  (void *) scsicmd);
882 
883  /*
884  * Check that the command queued to the controller
885  */
886  if (status == -EINPROGRESS) {
887  scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
888  return 0;
889  }
890 
891  printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
892  aac_fib_complete(cmd_fibcontext);
893  aac_fib_free(cmd_fibcontext);
894  return -1;
895 }
896 
897 /* Function: setinqserial
898  *
899  * Arguments: [1] pointer to void [1] int
900  *
901  * Purpose: Sets SCSI Unit Serial number.
902  * This is a fake. We should read a proper
903  * serial number from the container. <SuSE>But
904  * without docs it's quite hard to do it :-)
905  * So this will have to do in the meantime.</SuSE>
906  */
907 
908 static int setinqserial(struct aac_dev *dev, void *data, int cid)
909 {
910  /*
911  * This breaks array migration.
912  */
913  return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
914  le32_to_cpu(dev->adapter_info.serial[0]), cid);
915 }
916 
917 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
918  u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
919 {
920  u8 *sense_buf = (u8 *)sense_data;
921  /* Sense data valid, err code 70h */
922  sense_buf[0] = 0x70; /* No info field */
923  sense_buf[1] = 0; /* Segment number, always zero */
924 
925  sense_buf[2] = sense_key; /* Sense key */
926 
927  sense_buf[12] = sense_code; /* Additional sense code */
928  sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
929 
930  if (sense_key == ILLEGAL_REQUEST) {
931  sense_buf[7] = 10; /* Additional sense length */
932 
933  sense_buf[15] = bit_pointer;
934  /* Illegal parameter is in the parameter block */
935  if (sense_code == SENCODE_INVALID_CDB_FIELD)
936  sense_buf[15] |= 0xc0;/* Std sense key specific field */
937  /* Illegal parameter is in the CDB block */
938  sense_buf[16] = field_pointer >> 8; /* MSB */
939  sense_buf[17] = field_pointer; /* LSB */
940  } else
941  sense_buf[7] = 6; /* Additional sense length */
942 }
943 
944 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
945 {
946  if (lba & 0xffffffff00000000LL) {
947  int cid = scmd_id(cmd);
948  dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
949  cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
951  set_sense(&dev->fsa_dev[cid].sense_data,
954  memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
955  min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
957  cmd->scsi_done(cmd);
958  return 1;
959  }
960  return 0;
961 }
962 
963 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
964 {
965  return 0;
966 }
967 
968 static void io_callback(void *context, struct fib * fibptr);
969 
970 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
971 {
972  struct aac_dev *dev = fib->dev;
973  u16 fibsize, command;
974 
975  aac_fib_init(fib);
976  if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 && !dev->sync_mode) {
977  struct aac_raw_io2 *readcmd2;
978  readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
979  memset(readcmd2, 0, sizeof(struct aac_raw_io2));
980  readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
981  readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
982  readcmd2->byteCount = cpu_to_le32(count<<9);
983  readcmd2->cid = cpu_to_le16(scmd_id(cmd));
984  readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
985  aac_build_sgraw2(cmd, readcmd2, dev->scsi_host_ptr->sg_tablesize);
986  command = ContainerRawIo2;
987  fibsize = sizeof(struct aac_raw_io2) +
988  ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
989  } else {
990  struct aac_raw_io *readcmd;
991  readcmd = (struct aac_raw_io *) fib_data(fib);
992  readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
993  readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
994  readcmd->count = cpu_to_le32(count<<9);
995  readcmd->cid = cpu_to_le16(scmd_id(cmd));
996  readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
997  readcmd->bpTotal = 0;
998  readcmd->bpComplete = 0;
999  aac_build_sgraw(cmd, &readcmd->sg);
1000  command = ContainerRawIo;
1001  fibsize = sizeof(struct aac_raw_io) +
1002  ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1003  }
1004 
1005  BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1006  /*
1007  * Now send the Fib to the adapter
1008  */
1009  return aac_fib_send(command,
1010  fib,
1011  fibsize,
1012  FsaNormal,
1013  0, 1,
1014  (fib_callback) io_callback,
1015  (void *) cmd);
1016 }
1017 
1018 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1019 {
1020  u16 fibsize;
1021  struct aac_read64 *readcmd;
1022  aac_fib_init(fib);
1023  readcmd = (struct aac_read64 *) fib_data(fib);
1024  readcmd->command = cpu_to_le32(VM_CtHostRead64);
1025  readcmd->cid = cpu_to_le16(scmd_id(cmd));
1026  readcmd->sector_count = cpu_to_le16(count);
1027  readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1028  readcmd->pad = 0;
1029  readcmd->flags = 0;
1030 
1031  aac_build_sg64(cmd, &readcmd->sg);
1032  fibsize = sizeof(struct aac_read64) +
1033  ((le32_to_cpu(readcmd->sg.count) - 1) *
1034  sizeof (struct sgentry64));
1035  BUG_ON (fibsize > (fib->dev->max_fib_size -
1036  sizeof(struct aac_fibhdr)));
1037  /*
1038  * Now send the Fib to the adapter
1039  */
1041  fib,
1042  fibsize,
1043  FsaNormal,
1044  0, 1,
1045  (fib_callback) io_callback,
1046  (void *) cmd);
1047 }
1048 
1049 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1050 {
1051  u16 fibsize;
1052  struct aac_read *readcmd;
1053  aac_fib_init(fib);
1054  readcmd = (struct aac_read *) fib_data(fib);
1055  readcmd->command = cpu_to_le32(VM_CtBlockRead);
1056  readcmd->cid = cpu_to_le32(scmd_id(cmd));
1057  readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1058  readcmd->count = cpu_to_le32(count * 512);
1059 
1060  aac_build_sg(cmd, &readcmd->sg);
1061  fibsize = sizeof(struct aac_read) +
1062  ((le32_to_cpu(readcmd->sg.count) - 1) *
1063  sizeof (struct sgentry));
1064  BUG_ON (fibsize > (fib->dev->max_fib_size -
1065  sizeof(struct aac_fibhdr)));
1066  /*
1067  * Now send the Fib to the adapter
1068  */
1070  fib,
1071  fibsize,
1072  FsaNormal,
1073  0, 1,
1074  (fib_callback) io_callback,
1075  (void *) cmd);
1076 }
1077 
1078 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1079 {
1080  struct aac_dev *dev = fib->dev;
1081  u16 fibsize, command;
1082 
1083  aac_fib_init(fib);
1084  if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 && !dev->sync_mode) {
1085  struct aac_raw_io2 *writecmd2;
1086  writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1087  memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1088  writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1089  writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1090  writecmd2->byteCount = cpu_to_le32(count<<9);
1091  writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1092  writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1093  (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1096  aac_build_sgraw2(cmd, writecmd2, dev->scsi_host_ptr->sg_tablesize);
1097  command = ContainerRawIo2;
1098  fibsize = sizeof(struct aac_raw_io2) +
1099  ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1100  } else {
1101  struct aac_raw_io *writecmd;
1102  writecmd = (struct aac_raw_io *) fib_data(fib);
1103  writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1104  writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1105  writecmd->count = cpu_to_le32(count<<9);
1106  writecmd->cid = cpu_to_le16(scmd_id(cmd));
1107  writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1108  (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1111  writecmd->bpTotal = 0;
1112  writecmd->bpComplete = 0;
1113  aac_build_sgraw(cmd, &writecmd->sg);
1114  command = ContainerRawIo;
1115  fibsize = sizeof(struct aac_raw_io) +
1116  ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1117  }
1118 
1119  BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1120  /*
1121  * Now send the Fib to the adapter
1122  */
1123  return aac_fib_send(command,
1124  fib,
1125  fibsize,
1126  FsaNormal,
1127  0, 1,
1128  (fib_callback) io_callback,
1129  (void *) cmd);
1130 }
1131 
1132 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1133 {
1134  u16 fibsize;
1135  struct aac_write64 *writecmd;
1136  aac_fib_init(fib);
1137  writecmd = (struct aac_write64 *) fib_data(fib);
1138  writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1139  writecmd->cid = cpu_to_le16(scmd_id(cmd));
1140  writecmd->sector_count = cpu_to_le16(count);
1141  writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1142  writecmd->pad = 0;
1143  writecmd->flags = 0;
1144 
1145  aac_build_sg64(cmd, &writecmd->sg);
1146  fibsize = sizeof(struct aac_write64) +
1147  ((le32_to_cpu(writecmd->sg.count) - 1) *
1148  sizeof (struct sgentry64));
1149  BUG_ON (fibsize > (fib->dev->max_fib_size -
1150  sizeof(struct aac_fibhdr)));
1151  /*
1152  * Now send the Fib to the adapter
1153  */
1155  fib,
1156  fibsize,
1157  FsaNormal,
1158  0, 1,
1159  (fib_callback) io_callback,
1160  (void *) cmd);
1161 }
1162 
1163 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1164 {
1165  u16 fibsize;
1166  struct aac_write *writecmd;
1167  aac_fib_init(fib);
1168  writecmd = (struct aac_write *) fib_data(fib);
1169  writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1170  writecmd->cid = cpu_to_le32(scmd_id(cmd));
1171  writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1172  writecmd->count = cpu_to_le32(count * 512);
1173  writecmd->sg.count = cpu_to_le32(1);
1174  /* ->stable is not used - it did mean which type of write */
1175 
1176  aac_build_sg(cmd, &writecmd->sg);
1177  fibsize = sizeof(struct aac_write) +
1178  ((le32_to_cpu(writecmd->sg.count) - 1) *
1179  sizeof (struct sgentry));
1180  BUG_ON (fibsize > (fib->dev->max_fib_size -
1181  sizeof(struct aac_fibhdr)));
1182  /*
1183  * Now send the Fib to the adapter
1184  */
1186  fib,
1187  fibsize,
1188  FsaNormal,
1189  0, 1,
1190  (fib_callback) io_callback,
1191  (void *) cmd);
1192 }
1193 
1194 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1195 {
1196  struct aac_srb * srbcmd;
1197  u32 flag;
1198  u32 timeout;
1199 
1200  aac_fib_init(fib);
1201  switch(cmd->sc_data_direction){
1202  case DMA_TO_DEVICE:
1203  flag = SRB_DataOut;
1204  break;
1205  case DMA_BIDIRECTIONAL:
1206  flag = SRB_DataIn | SRB_DataOut;
1207  break;
1208  case DMA_FROM_DEVICE:
1209  flag = SRB_DataIn;
1210  break;
1211  case DMA_NONE:
1212  default: /* shuts up some versions of gcc */
1213  flag = SRB_NoDataXfer;
1214  break;
1215  }
1216 
1217  srbcmd = (struct aac_srb*) fib_data(fib);
1220  srbcmd->id = cpu_to_le32(scmd_id(cmd));
1221  srbcmd->lun = cpu_to_le32(cmd->device->lun);
1222  srbcmd->flags = cpu_to_le32(flag);
1223  timeout = cmd->request->timeout/HZ;
1224  if (timeout == 0)
1225  timeout = 1;
1226  srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1227  srbcmd->retry_limit = 0; /* Obsolete parameter */
1228  srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1229  return srbcmd;
1230 }
1231 
1232 static void aac_srb_callback(void *context, struct fib * fibptr);
1233 
1234 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1235 {
1236  u16 fibsize;
1237  struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1238 
1239  aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
1240  srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1241 
1242  memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1243  memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1244  /*
1245  * Build Scatter/Gather list
1246  */
1247  fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1248  ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1249  sizeof (struct sgentry64));
1250  BUG_ON (fibsize > (fib->dev->max_fib_size -
1251  sizeof(struct aac_fibhdr)));
1252 
1253  /*
1254  * Now send the Fib to the adapter
1255  */
1256  return aac_fib_send(ScsiPortCommand64, fib,
1257  fibsize, FsaNormal, 0, 1,
1258  (fib_callback) aac_srb_callback,
1259  (void *) cmd);
1260 }
1261 
1262 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1263 {
1264  u16 fibsize;
1265  struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1266 
1267  aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
1268  srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1269 
1270  memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1271  memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1272  /*
1273  * Build Scatter/Gather list
1274  */
1275  fibsize = sizeof (struct aac_srb) +
1276  (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1277  sizeof (struct sgentry));
1278  BUG_ON (fibsize > (fib->dev->max_fib_size -
1279  sizeof(struct aac_fibhdr)));
1280 
1281  /*
1282  * Now send the Fib to the adapter
1283  */
1284  return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1285  (fib_callback) aac_srb_callback, (void *) cmd);
1286 }
1287 
1288 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1289 {
1290  if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1291  (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1292  return FAILED;
1293  return aac_scsi_32(fib, cmd);
1294 }
1295 
1297 {
1298  struct fib* fibptr;
1299  int rcode;
1300  u32 tmp;
1301  struct aac_adapter_info *info;
1302  struct aac_bus_info *command;
1304 
1305  if (!(fibptr = aac_fib_alloc(dev)))
1306  return -ENOMEM;
1307 
1308  aac_fib_init(fibptr);
1309  info = (struct aac_adapter_info *) fib_data(fibptr);
1310  memset(info,0,sizeof(*info));
1311 
1313  fibptr,
1314  sizeof(*info),
1315  FsaNormal,
1316  -1, 1, /* First `interrupt' command uses special wait */
1317  NULL,
1318  NULL);
1319 
1320  if (rcode < 0) {
1321  /* FIB should be freed only after
1322  * getting the response from the F/W */
1323  if (rcode != -ERESTARTSYS) {
1324  aac_fib_complete(fibptr);
1325  aac_fib_free(fibptr);
1326  }
1327  return rcode;
1328  }
1329  memcpy(&dev->adapter_info, info, sizeof(*info));
1330 
1331  if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1333 
1334  aac_fib_init(fibptr);
1335 
1336  sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1337 
1338  memset(sinfo,0,sizeof(*sinfo));
1339 
1341  fibptr,
1342  sizeof(*sinfo),
1343  FsaNormal,
1344  1, 1,
1345  NULL,
1346  NULL);
1347 
1348  if (rcode >= 0)
1349  memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1350  if (rcode == -ERESTARTSYS) {
1351  fibptr = aac_fib_alloc(dev);
1352  if (!fibptr)
1353  return -ENOMEM;
1354  }
1355 
1356  }
1357 
1358 
1359  /*
1360  * GetBusInfo
1361  */
1362 
1363  aac_fib_init(fibptr);
1364 
1365  bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1366 
1367  memset(bus_info, 0, sizeof(*bus_info));
1368 
1369  command = (struct aac_bus_info *)bus_info;
1370 
1371  command->Command = cpu_to_le32(VM_Ioctl);
1372  command->ObjType = cpu_to_le32(FT_DRIVE);
1373  command->MethodId = cpu_to_le32(1);
1374  command->CtlCmd = cpu_to_le32(GetBusInfo);
1375 
1377  fibptr,
1378  sizeof (*bus_info),
1379  FsaNormal,
1380  1, 1,
1381  NULL, NULL);
1382 
1383  /* reasoned default */
1384  dev->maximum_num_physicals = 16;
1385  if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1387  dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1388  }
1389 
1390  if (!dev->in_reset) {
1391  char buffer[16];
1392  tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1393  printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1394  dev->name,
1395  dev->id,
1396  tmp>>24,
1397  (tmp>>16)&0xff,
1398  tmp&0xff,
1399  le32_to_cpu(dev->adapter_info.kernelbuild),
1400  (int)sizeof(dev->supplement_adapter_info.BuildDate),
1401  dev->supplement_adapter_info.BuildDate);
1402  tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1403  printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1404  dev->name, dev->id,
1405  tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1406  le32_to_cpu(dev->adapter_info.monitorbuild));
1407  tmp = le32_to_cpu(dev->adapter_info.biosrev);
1408  printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1409  dev->name, dev->id,
1410  tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1411  le32_to_cpu(dev->adapter_info.biosbuild));
1412  buffer[0] = '\0';
1414  shost_to_class(dev->scsi_host_ptr), buffer))
1415  printk(KERN_INFO "%s%d: serial %s",
1416  dev->name, dev->id, buffer);
1417  if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1418  printk(KERN_INFO "%s%d: TSID %.*s\n",
1419  dev->name, dev->id,
1420  (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1421  dev->supplement_adapter_info.VpdInfo.Tsid);
1422  }
1423  if (!aac_check_reset || ((aac_check_reset == 1) &&
1424  (dev->supplement_adapter_info.SupportedOptions2 &
1426  printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1427  dev->name, dev->id);
1428  }
1429  }
1430 
1431  dev->cache_protected = 0;
1432  dev->jbod = ((dev->supplement_adapter_info.FeatureBits &
1433  AAC_FEATURE_JBOD) != 0);
1434  dev->nondasd_support = 0;
1435  dev->raid_scsi_mode = 0;
1436  if(dev->adapter_info.options & AAC_OPT_NONDASD)
1437  dev->nondasd_support = 1;
1438 
1439  /*
1440  * If the firmware supports ROMB RAID/SCSI mode and we are currently
1441  * in RAID/SCSI mode, set the flag. For now if in this mode we will
1442  * force nondasd support on. If we decide to allow the non-dasd flag
1443  * additional changes changes will have to be made to support
1444  * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
1445  * changed to support the new dev->raid_scsi_mode flag instead of
1446  * leaching off of the dev->nondasd_support flag. Also in linit.c the
1447  * function aac_detect will have to be modified where it sets up the
1448  * max number of channels based on the aac->nondasd_support flag only.
1449  */
1450  if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1451  (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1452  dev->nondasd_support = 1;
1453  dev->raid_scsi_mode = 1;
1454  }
1455  if (dev->raid_scsi_mode != 0)
1456  printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1457  dev->name, dev->id);
1458 
1459  if (nondasd != -1)
1460  dev->nondasd_support = (nondasd!=0);
1461  if (dev->nondasd_support && !dev->in_reset)
1462  printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1463 
1464  if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
1465  dev->needs_dac = 1;
1466  dev->dac_support = 0;
1467  if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
1468  (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
1469  if (!dev->in_reset)
1470  printk(KERN_INFO "%s%d: 64bit support enabled.\n",
1471  dev->name, dev->id);
1472  dev->dac_support = 1;
1473  }
1474 
1475  if(dacmode != -1) {
1476  dev->dac_support = (dacmode!=0);
1477  }
1478 
1479  /* avoid problems with AAC_QUIRK_SCSI_32 controllers */
1480  if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
1481  & AAC_QUIRK_SCSI_32)) {
1482  dev->nondasd_support = 0;
1483  dev->jbod = 0;
1484  expose_physicals = 0;
1485  }
1486 
1487  if(dev->dac_support != 0) {
1488  if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64)) &&
1489  !pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
1490  if (!dev->in_reset)
1491  printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1492  dev->name, dev->id);
1493  } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32)) &&
1494  !pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
1495  printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1496  dev->name, dev->id);
1497  dev->dac_support = 0;
1498  } else {
1499  printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1500  dev->name, dev->id);
1501  rcode = -ENOMEM;
1502  }
1503  }
1504  /*
1505  * Deal with configuring for the individualized limits of each packet
1506  * interface.
1507  */
1508  dev->a_ops.adapter_scsi = (dev->dac_support)
1509  ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
1510  ? aac_scsi_32_64
1511  : aac_scsi_64)
1512  : aac_scsi_32;
1513  if (dev->raw_io_interface) {
1514  dev->a_ops.adapter_bounds = (dev->raw_io_64)
1515  ? aac_bounds_64
1516  : aac_bounds_32;
1517  dev->a_ops.adapter_read = aac_read_raw_io;
1518  dev->a_ops.adapter_write = aac_write_raw_io;
1519  } else {
1520  dev->a_ops.adapter_bounds = aac_bounds_32;
1521  dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1522  sizeof(struct aac_fibhdr) -
1523  sizeof(struct aac_write) + sizeof(struct sgentry)) /
1524  sizeof(struct sgentry);
1525  if (dev->dac_support) {
1526  dev->a_ops.adapter_read = aac_read_block64;
1527  dev->a_ops.adapter_write = aac_write_block64;
1528  /*
1529  * 38 scatter gather elements
1530  */
1531  dev->scsi_host_ptr->sg_tablesize =
1532  (dev->max_fib_size -
1533  sizeof(struct aac_fibhdr) -
1534  sizeof(struct aac_write64) +
1535  sizeof(struct sgentry64)) /
1536  sizeof(struct sgentry64);
1537  } else {
1538  dev->a_ops.adapter_read = aac_read_block;
1539  dev->a_ops.adapter_write = aac_write_block;
1540  }
1541  dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1542  if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1543  /*
1544  * Worst case size that could cause sg overflow when
1545  * we break up SG elements that are larger than 64KB.
1546  * Would be nice if we could tell the SCSI layer what
1547  * the maximum SG element size can be. Worst case is
1548  * (sg_tablesize-1) 4KB elements with one 64KB
1549  * element.
1550  * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
1551  */
1552  dev->scsi_host_ptr->max_sectors =
1553  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1554  }
1555  }
1556  /* FIB should be freed only after getting the response from the F/W */
1557  if (rcode != -ERESTARTSYS) {
1558  aac_fib_complete(fibptr);
1559  aac_fib_free(fibptr);
1560  }
1561 
1562  return rcode;
1563 }
1564 
1565 
1566 static void io_callback(void *context, struct fib * fibptr)
1567 {
1568  struct aac_dev *dev;
1569  struct aac_read_reply *readreply;
1570  struct scsi_cmnd *scsicmd;
1571  u32 cid;
1572 
1573  scsicmd = (struct scsi_cmnd *) context;
1574 
1575  if (!aac_valid_context(scsicmd, fibptr))
1576  return;
1577 
1578  dev = fibptr->dev;
1579  cid = scmd_id(scsicmd);
1580 
1581  if (nblank(dprintk(x))) {
1582  u64 lba;
1583  switch (scsicmd->cmnd[0]) {
1584  case WRITE_6:
1585  case READ_6:
1586  lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1587  (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1588  break;
1589  case WRITE_16:
1590  case READ_16:
1591  lba = ((u64)scsicmd->cmnd[2] << 56) |
1592  ((u64)scsicmd->cmnd[3] << 48) |
1593  ((u64)scsicmd->cmnd[4] << 40) |
1594  ((u64)scsicmd->cmnd[5] << 32) |
1595  ((u64)scsicmd->cmnd[6] << 24) |
1596  (scsicmd->cmnd[7] << 16) |
1597  (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1598  break;
1599  case WRITE_12:
1600  case READ_12:
1601  lba = ((u64)scsicmd->cmnd[2] << 24) |
1602  (scsicmd->cmnd[3] << 16) |
1603  (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1604  break;
1605  default:
1606  lba = ((u64)scsicmd->cmnd[2] << 24) |
1607  (scsicmd->cmnd[3] << 16) |
1608  (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1609  break;
1610  }
1612  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1613  smp_processor_id(), (unsigned long long)lba, jiffies);
1614  }
1615 
1616  BUG_ON(fibptr == NULL);
1617 
1618  scsi_dma_unmap(scsicmd);
1619 
1620  readreply = (struct aac_read_reply *)fib_data(fibptr);
1621  switch (le32_to_cpu(readreply->status)) {
1622  case ST_OK:
1623  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1624  SAM_STAT_GOOD;
1625  dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
1626  break;
1627  case ST_NOT_READY:
1628  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1630  set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
1632  memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1633  min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1635  break;
1636  default:
1637 #ifdef AAC_DETAILED_STATUS_INFO
1638  printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1639  le32_to_cpu(readreply->status));
1640 #endif
1641  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1643  set_sense(&dev->fsa_dev[cid].sense_data,
1646  memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1647  min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1649  break;
1650  }
1651  aac_fib_complete(fibptr);
1652  aac_fib_free(fibptr);
1653 
1654  scsicmd->scsi_done(scsicmd);
1655 }
1656 
1657 static int aac_read(struct scsi_cmnd * scsicmd)
1658 {
1659  u64 lba;
1660  u32 count;
1661  int status;
1662  struct aac_dev *dev;
1663  struct fib * cmd_fibcontext;
1664  int cid;
1665 
1666  dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1667  /*
1668  * Get block address and transfer length
1669  */
1670  switch (scsicmd->cmnd[0]) {
1671  case READ_6:
1672  dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1673 
1674  lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1675  (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1676  count = scsicmd->cmnd[4];
1677 
1678  if (count == 0)
1679  count = 256;
1680  break;
1681  case READ_16:
1682  dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1683 
1684  lba = ((u64)scsicmd->cmnd[2] << 56) |
1685  ((u64)scsicmd->cmnd[3] << 48) |
1686  ((u64)scsicmd->cmnd[4] << 40) |
1687  ((u64)scsicmd->cmnd[5] << 32) |
1688  ((u64)scsicmd->cmnd[6] << 24) |
1689  (scsicmd->cmnd[7] << 16) |
1690  (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1691  count = (scsicmd->cmnd[10] << 24) |
1692  (scsicmd->cmnd[11] << 16) |
1693  (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1694  break;
1695  case READ_12:
1696  dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1697 
1698  lba = ((u64)scsicmd->cmnd[2] << 24) |
1699  (scsicmd->cmnd[3] << 16) |
1700  (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1701  count = (scsicmd->cmnd[6] << 24) |
1702  (scsicmd->cmnd[7] << 16) |
1703  (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1704  break;
1705  default:
1706  dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1707 
1708  lba = ((u64)scsicmd->cmnd[2] << 24) |
1709  (scsicmd->cmnd[3] << 16) |
1710  (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1711  count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1712  break;
1713  }
1714 
1715  if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
1716  cid = scmd_id(scsicmd);
1717  dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1718  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1720  set_sense(&dev->fsa_dev[cid].sense_data,
1723  memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1724  min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1726  scsicmd->scsi_done(scsicmd);
1727  return 1;
1728  }
1729 
1730  dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1731  smp_processor_id(), (unsigned long long)lba, jiffies));
1732  if (aac_adapter_bounds(dev,scsicmd,lba))
1733  return 0;
1734  /*
1735  * Alocate and initialize a Fib
1736  */
1737  if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1738  printk(KERN_WARNING "aac_read: fib allocation failed\n");
1739  return -1;
1740  }
1741 
1742  status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1743 
1744  /*
1745  * Check that the command queued to the controller
1746  */
1747  if (status == -EINPROGRESS) {
1748  scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1749  return 0;
1750  }
1751 
1752  printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1753  /*
1754  * For some reason, the Fib didn't queue, return QUEUE_FULL
1755  */
1756  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1757  scsicmd->scsi_done(scsicmd);
1758  aac_fib_complete(cmd_fibcontext);
1759  aac_fib_free(cmd_fibcontext);
1760  return 0;
1761 }
1762 
1763 static int aac_write(struct scsi_cmnd * scsicmd)
1764 {
1765  u64 lba;
1766  u32 count;
1767  int fua;
1768  int status;
1769  struct aac_dev *dev;
1770  struct fib * cmd_fibcontext;
1771  int cid;
1772 
1773  dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1774  /*
1775  * Get block address and transfer length
1776  */
1777  if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
1778  {
1779  lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1780  count = scsicmd->cmnd[4];
1781  if (count == 0)
1782  count = 256;
1783  fua = 0;
1784  } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1785  dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1786 
1787  lba = ((u64)scsicmd->cmnd[2] << 56) |
1788  ((u64)scsicmd->cmnd[3] << 48) |
1789  ((u64)scsicmd->cmnd[4] << 40) |
1790  ((u64)scsicmd->cmnd[5] << 32) |
1791  ((u64)scsicmd->cmnd[6] << 24) |
1792  (scsicmd->cmnd[7] << 16) |
1793  (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1794  count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1795  (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1796  fua = scsicmd->cmnd[1] & 0x8;
1797  } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1798  dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1799 
1800  lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1801  | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1802  count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1803  | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1804  fua = scsicmd->cmnd[1] & 0x8;
1805  } else {
1806  dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1807  lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1808  count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1809  fua = scsicmd->cmnd[1] & 0x8;
1810  }
1811 
1812  if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
1813  cid = scmd_id(scsicmd);
1814  dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1815  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1817  set_sense(&dev->fsa_dev[cid].sense_data,
1820  memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1821  min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1823  scsicmd->scsi_done(scsicmd);
1824  return 1;
1825  }
1826 
1827  dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1828  smp_processor_id(), (unsigned long long)lba, jiffies));
1829  if (aac_adapter_bounds(dev,scsicmd,lba))
1830  return 0;
1831  /*
1832  * Allocate and initialize a Fib then setup a BlockWrite command
1833  */
1834  if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1835  /* FIB temporarily unavailable,not catastrophic failure */
1836 
1837  /* scsicmd->result = DID_ERROR << 16;
1838  * scsicmd->scsi_done(scsicmd);
1839  * return 0;
1840  */
1841  printk(KERN_WARNING "aac_write: fib allocation failed\n");
1842  return -1;
1843  }
1844 
1845  status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
1846 
1847  /*
1848  * Check that the command queued to the controller
1849  */
1850  if (status == -EINPROGRESS) {
1851  scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1852  return 0;
1853  }
1854 
1855  printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1856  /*
1857  * For some reason, the Fib didn't queue, return QUEUE_FULL
1858  */
1859  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1860  scsicmd->scsi_done(scsicmd);
1861 
1862  aac_fib_complete(cmd_fibcontext);
1863  aac_fib_free(cmd_fibcontext);
1864  return 0;
1865 }
1866 
1867 static void synchronize_callback(void *context, struct fib *fibptr)
1868 {
1869  struct aac_synchronize_reply *synchronizereply;
1870  struct scsi_cmnd *cmd;
1871 
1872  cmd = context;
1873 
1874  if (!aac_valid_context(cmd, fibptr))
1875  return;
1876 
1877  dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1878  smp_processor_id(), jiffies));
1879  BUG_ON(fibptr == NULL);
1880 
1881 
1882  synchronizereply = fib_data(fibptr);
1883  if (le32_to_cpu(synchronizereply->status) == CT_OK)
1884  cmd->result = DID_OK << 16 |
1886  else {
1887  struct scsi_device *sdev = cmd->device;
1888  struct aac_dev *dev = fibptr->dev;
1889  u32 cid = sdev_id(sdev);
1891  "synchronize_callback: synchronize failed, status = %d\n",
1892  le32_to_cpu(synchronizereply->status));
1893  cmd->result = DID_OK << 16 |
1895  set_sense(&dev->fsa_dev[cid].sense_data,
1898  memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1899  min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1901  }
1902 
1903  aac_fib_complete(fibptr);
1904  aac_fib_free(fibptr);
1905  cmd->scsi_done(cmd);
1906 }
1907 
1908 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1909 {
1910  int status;
1911  struct fib *cmd_fibcontext;
1912  struct aac_synchronize *synchronizecmd;
1913  struct scsi_cmnd *cmd;
1914  struct scsi_device *sdev = scsicmd->device;
1915  int active = 0;
1916  struct aac_dev *aac;
1917  u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
1918  (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1919  u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1920  unsigned long flags;
1921 
1922  /*
1923  * Wait for all outstanding queued commands to complete to this
1924  * specific target (block).
1925  */
1927  list_for_each_entry(cmd, &sdev->cmd_list, list)
1928  if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1929  u64 cmnd_lba;
1930  u32 cmnd_count;
1931 
1932  if (cmd->cmnd[0] == WRITE_6) {
1933  cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
1934  (cmd->cmnd[2] << 8) |
1935  cmd->cmnd[3];
1936  cmnd_count = cmd->cmnd[4];
1937  if (cmnd_count == 0)
1938  cmnd_count = 256;
1939  } else if (cmd->cmnd[0] == WRITE_16) {
1940  cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
1941  ((u64)cmd->cmnd[3] << 48) |
1942  ((u64)cmd->cmnd[4] << 40) |
1943  ((u64)cmd->cmnd[5] << 32) |
1944  ((u64)cmd->cmnd[6] << 24) |
1945  (cmd->cmnd[7] << 16) |
1946  (cmd->cmnd[8] << 8) |
1947  cmd->cmnd[9];
1948  cmnd_count = (cmd->cmnd[10] << 24) |
1949  (cmd->cmnd[11] << 16) |
1950  (cmd->cmnd[12] << 8) |
1951  cmd->cmnd[13];
1952  } else if (cmd->cmnd[0] == WRITE_12) {
1953  cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1954  (cmd->cmnd[3] << 16) |
1955  (cmd->cmnd[4] << 8) |
1956  cmd->cmnd[5];
1957  cmnd_count = (cmd->cmnd[6] << 24) |
1958  (cmd->cmnd[7] << 16) |
1959  (cmd->cmnd[8] << 8) |
1960  cmd->cmnd[9];
1961  } else if (cmd->cmnd[0] == WRITE_10) {
1962  cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1963  (cmd->cmnd[3] << 16) |
1964  (cmd->cmnd[4] << 8) |
1965  cmd->cmnd[5];
1966  cmnd_count = (cmd->cmnd[7] << 8) |
1967  cmd->cmnd[8];
1968  } else
1969  continue;
1970  if (((cmnd_lba + cmnd_count) < lba) ||
1971  (count && ((lba + count) < cmnd_lba)))
1972  continue;
1973  ++active;
1974  break;
1975  }
1976 
1977  spin_unlock_irqrestore(&sdev->list_lock, flags);
1978 
1979  /*
1980  * Yield the processor (requeue for later)
1981  */
1982  if (active)
1983  return SCSI_MLQUEUE_DEVICE_BUSY;
1984 
1985  aac = (struct aac_dev *)sdev->host->hostdata;
1986  if (aac->in_reset)
1987  return SCSI_MLQUEUE_HOST_BUSY;
1988 
1989  /*
1990  * Allocate and initialize a Fib
1991  */
1992  if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1993  return SCSI_MLQUEUE_HOST_BUSY;
1994 
1995  aac_fib_init(cmd_fibcontext);
1996 
1997  synchronizecmd = fib_data(cmd_fibcontext);
1998  synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1999  synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2000  synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2001  synchronizecmd->count =
2002  cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2003 
2004  /*
2005  * Now send the Fib to the adapter
2006  */
2007  status = aac_fib_send(ContainerCommand,
2008  cmd_fibcontext,
2009  sizeof(struct aac_synchronize),
2010  FsaNormal,
2011  0, 1,
2012  (fib_callback)synchronize_callback,
2013  (void *)scsicmd);
2014 
2015  /*
2016  * Check that the command queued to the controller
2017  */
2018  if (status == -EINPROGRESS) {
2019  scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2020  return 0;
2021  }
2022 
2024  "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2025  aac_fib_complete(cmd_fibcontext);
2026  aac_fib_free(cmd_fibcontext);
2027  return SCSI_MLQUEUE_HOST_BUSY;
2028 }
2029 
2030 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2031 {
2032  struct scsi_cmnd *scsicmd = context;
2033 
2034  if (!aac_valid_context(scsicmd, fibptr))
2035  return;
2036 
2037  BUG_ON(fibptr == NULL);
2038 
2039  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2040 
2041  aac_fib_complete(fibptr);
2042  aac_fib_free(fibptr);
2043  scsicmd->scsi_done(scsicmd);
2044 }
2045 
2046 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2047 {
2048  int status;
2049  struct fib *cmd_fibcontext;
2050  struct aac_power_management *pmcmd;
2051  struct scsi_device *sdev = scsicmd->device;
2052  struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2053 
2054  if (!(aac->supplement_adapter_info.SupportedOptions2 &
2056  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2057  SAM_STAT_GOOD;
2058  scsicmd->scsi_done(scsicmd);
2059  return 0;
2060  }
2061 
2062  if (aac->in_reset)
2063  return SCSI_MLQUEUE_HOST_BUSY;
2064 
2065  /*
2066  * Allocate and initialize a Fib
2067  */
2068  cmd_fibcontext = aac_fib_alloc(aac);
2069  if (!cmd_fibcontext)
2070  return SCSI_MLQUEUE_HOST_BUSY;
2071 
2072  aac_fib_init(cmd_fibcontext);
2073 
2074  pmcmd = fib_data(cmd_fibcontext);
2077  /* Eject bit ignored, not relevant */
2078  pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2080  pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2081  pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2083 
2084  /*
2085  * Now send the Fib to the adapter
2086  */
2087  status = aac_fib_send(ContainerCommand,
2088  cmd_fibcontext,
2089  sizeof(struct aac_power_management),
2090  FsaNormal,
2091  0, 1,
2092  (fib_callback)aac_start_stop_callback,
2093  (void *)scsicmd);
2094 
2095  /*
2096  * Check that the command queued to the controller
2097  */
2098  if (status == -EINPROGRESS) {
2099  scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2100  return 0;
2101  }
2102 
2103  aac_fib_complete(cmd_fibcontext);
2104  aac_fib_free(cmd_fibcontext);
2105  return SCSI_MLQUEUE_HOST_BUSY;
2106 }
2107 
2116 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2117 {
2118  u32 cid;
2119  struct Scsi_Host *host = scsicmd->device->host;
2120  struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2121  struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2122 
2123  if (fsa_dev_ptr == NULL)
2124  return -1;
2125  /*
2126  * If the bus, id or lun is out of range, return fail
2127  * Test does not apply to ID 16, the pseudo id for the controller
2128  * itself.
2129  */
2130  cid = scmd_id(scsicmd);
2131  if (cid != host->this_id) {
2132  if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2133  if((cid >= dev->maximum_num_containers) ||
2134  (scsicmd->device->lun != 0)) {
2135  scsicmd->result = DID_NO_CONNECT << 16;
2136  scsicmd->scsi_done(scsicmd);
2137  return 0;
2138  }
2139 
2140  /*
2141  * If the target container doesn't exist, it may have
2142  * been newly created
2143  */
2144  if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2145  (fsa_dev_ptr[cid].sense_data.sense_key ==
2146  NOT_READY)) {
2147  switch (scsicmd->cmnd[0]) {
2148  case SERVICE_ACTION_IN:
2149  if (!(dev->raw_io_interface) ||
2150  !(dev->raw_io_64) ||
2151  ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2152  break;
2153  case INQUIRY:
2154  case READ_CAPACITY:
2155  case TEST_UNIT_READY:
2156  if (dev->in_reset)
2157  return -1;
2158  return _aac_probe_container(scsicmd,
2159  aac_probe_container_callback2);
2160  default:
2161  break;
2162  }
2163  }
2164  } else { /* check for physical non-dasd devices */
2165  if (dev->nondasd_support || expose_physicals ||
2166  dev->jbod) {
2167  if (dev->in_reset)
2168  return -1;
2169  return aac_send_srb_fib(scsicmd);
2170  } else {
2171  scsicmd->result = DID_NO_CONNECT << 16;
2172  scsicmd->scsi_done(scsicmd);
2173  return 0;
2174  }
2175  }
2176  }
2177  /*
2178  * else Command for the controller itself
2179  */
2180  else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2181  (scsicmd->cmnd[0] != TEST_UNIT_READY))
2182  {
2183  dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2184  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2185  set_sense(&dev->fsa_dev[cid].sense_data,
2187  ASENCODE_INVALID_COMMAND, 0, 0);
2188  memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2189  min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2191  scsicmd->scsi_done(scsicmd);
2192  return 0;
2193  }
2194 
2195 
2196  /* Handle commands here that don't really require going out to the adapter */
2197  switch (scsicmd->cmnd[0]) {
2198  case INQUIRY:
2199  {
2200  struct inquiry_data inq_data;
2201 
2202  dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2203  memset(&inq_data, 0, sizeof (struct inquiry_data));
2204 
2205  if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2206  char *arr = (char *)&inq_data;
2207 
2208  /* EVPD bit set */
2209  arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2211  if (scsicmd->cmnd[2] == 0) {
2212  /* supported vital product data pages */
2213  arr[3] = 2;
2214  arr[4] = 0x0;
2215  arr[5] = 0x80;
2216  arr[1] = scsicmd->cmnd[2];
2217  scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2218  sizeof(inq_data));
2219  scsicmd->result = DID_OK << 16 |
2221  } else if (scsicmd->cmnd[2] == 0x80) {
2222  /* unit serial number page */
2223  arr[3] = setinqserial(dev, &arr[4],
2224  scmd_id(scsicmd));
2225  arr[1] = scsicmd->cmnd[2];
2226  scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2227  sizeof(inq_data));
2228  if (aac_wwn != 2)
2229  return aac_get_container_serial(
2230  scsicmd);
2231  /* SLES 10 SP1 special */
2232  scsicmd->result = DID_OK << 16 |
2234  } else {
2235  /* vpd page not implemented */
2236  scsicmd->result = DID_OK << 16 |
2237  COMMAND_COMPLETE << 8 |
2239  set_sense(&dev->fsa_dev[cid].sense_data,
2241  ASENCODE_NO_SENSE, 7, 2);
2242  memcpy(scsicmd->sense_buffer,
2243  &dev->fsa_dev[cid].sense_data,
2244  min_t(size_t,
2245  sizeof(dev->fsa_dev[cid].sense_data),
2247  }
2248  scsicmd->scsi_done(scsicmd);
2249  return 0;
2250  }
2251  inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
2252  inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2253  inq_data.inqd_len = 31;
2254  /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
2255  inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
2256  /*
2257  * Set the Vendor, Product, and Revision Level
2258  * see: <vendor>.c i.e. aac.c
2259  */
2260  if (cid == host->this_id) {
2261  setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2262  inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
2263  scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2264  sizeof(inq_data));
2265  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2266  scsicmd->scsi_done(scsicmd);
2267  return 0;
2268  }
2269  if (dev->in_reset)
2270  return -1;
2271  setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2272  inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
2273  scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2274  return aac_get_container_name(scsicmd);
2275  }
2276  case SERVICE_ACTION_IN:
2277  if (!(dev->raw_io_interface) ||
2278  !(dev->raw_io_64) ||
2279  ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2280  break;
2281  {
2282  u64 capacity;
2283  char cp[13];
2284  unsigned int alloc_len;
2285 
2286  dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2287  capacity = fsa_dev_ptr[cid].size - 1;
2288  cp[0] = (capacity >> 56) & 0xff;
2289  cp[1] = (capacity >> 48) & 0xff;
2290  cp[2] = (capacity >> 40) & 0xff;
2291  cp[3] = (capacity >> 32) & 0xff;
2292  cp[4] = (capacity >> 24) & 0xff;
2293  cp[5] = (capacity >> 16) & 0xff;
2294  cp[6] = (capacity >> 8) & 0xff;
2295  cp[7] = (capacity >> 0) & 0xff;
2296  cp[8] = 0;
2297  cp[9] = 0;
2298  cp[10] = 2;
2299  cp[11] = 0;
2300  cp[12] = 0;
2301 
2302  alloc_len = ((scsicmd->cmnd[10] << 24)
2303  + (scsicmd->cmnd[11] << 16)
2304  + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2305 
2306  alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2307  scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2308  if (alloc_len < scsi_bufflen(scsicmd))
2309  scsi_set_resid(scsicmd,
2310  scsi_bufflen(scsicmd) - alloc_len);
2311 
2312  /* Do not cache partition table for arrays */
2313  scsicmd->device->removable = 1;
2314 
2315  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2316  scsicmd->scsi_done(scsicmd);
2317 
2318  return 0;
2319  }
2320 
2321  case READ_CAPACITY:
2322  {
2323  u32 capacity;
2324  char cp[8];
2325 
2326  dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2327  if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2328  capacity = fsa_dev_ptr[cid].size - 1;
2329  else
2330  capacity = (u32)-1;
2331 
2332  cp[0] = (capacity >> 24) & 0xff;
2333  cp[1] = (capacity >> 16) & 0xff;
2334  cp[2] = (capacity >> 8) & 0xff;
2335  cp[3] = (capacity >> 0) & 0xff;
2336  cp[4] = 0;
2337  cp[5] = 0;
2338  cp[6] = 2;
2339  cp[7] = 0;
2340  scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2341  /* Do not cache partition table for arrays */
2342  scsicmd->device->removable = 1;
2343  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2344  SAM_STAT_GOOD;
2345  scsicmd->scsi_done(scsicmd);
2346 
2347  return 0;
2348  }
2349 
2350  case MODE_SENSE:
2351  {
2352  char mode_buf[7];
2353  int mode_buf_length = 4;
2354 
2355  dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2356  mode_buf[0] = 3; /* Mode data length */
2357  mode_buf[1] = 0; /* Medium type - default */
2358  mode_buf[2] = 0; /* Device-specific param,
2359  bit 8: 0/1 = write enabled/protected
2360  bit 4: 0/1 = FUA enabled */
2361  if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2362  mode_buf[2] = 0x10;
2363  mode_buf[3] = 0; /* Block descriptor length */
2364  if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2365  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2366  mode_buf[0] = 6;
2367  mode_buf[4] = 8;
2368  mode_buf[5] = 1;
2369  mode_buf[6] = ((aac_cache & 6) == 2)
2370  ? 0 : 0x04; /* WCE */
2371  mode_buf_length = 7;
2372  if (mode_buf_length > scsicmd->cmnd[4])
2373  mode_buf_length = scsicmd->cmnd[4];
2374  }
2375  scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2376  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2377  scsicmd->scsi_done(scsicmd);
2378 
2379  return 0;
2380  }
2381  case MODE_SENSE_10:
2382  {
2383  char mode_buf[11];
2384  int mode_buf_length = 8;
2385 
2386  dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2387  mode_buf[0] = 0; /* Mode data length (MSB) */
2388  mode_buf[1] = 6; /* Mode data length (LSB) */
2389  mode_buf[2] = 0; /* Medium type - default */
2390  mode_buf[3] = 0; /* Device-specific param,
2391  bit 8: 0/1 = write enabled/protected
2392  bit 4: 0/1 = FUA enabled */
2393  if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2394  mode_buf[3] = 0x10;
2395  mode_buf[4] = 0; /* reserved */
2396  mode_buf[5] = 0; /* reserved */
2397  mode_buf[6] = 0; /* Block descriptor length (MSB) */
2398  mode_buf[7] = 0; /* Block descriptor length (LSB) */
2399  if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2400  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2401  mode_buf[1] = 9;
2402  mode_buf[8] = 8;
2403  mode_buf[9] = 1;
2404  mode_buf[10] = ((aac_cache & 6) == 2)
2405  ? 0 : 0x04; /* WCE */
2406  mode_buf_length = 11;
2407  if (mode_buf_length > scsicmd->cmnd[8])
2408  mode_buf_length = scsicmd->cmnd[8];
2409  }
2410  scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2411 
2412  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2413  scsicmd->scsi_done(scsicmd);
2414 
2415  return 0;
2416  }
2417  case REQUEST_SENSE:
2418  dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2419  memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2420  memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2421  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2422  scsicmd->scsi_done(scsicmd);
2423  return 0;
2424 
2425  case ALLOW_MEDIUM_REMOVAL:
2426  dprintk((KERN_DEBUG "LOCK command.\n"));
2427  if (scsicmd->cmnd[4])
2428  fsa_dev_ptr[cid].locked = 1;
2429  else
2430  fsa_dev_ptr[cid].locked = 0;
2431 
2432  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2433  scsicmd->scsi_done(scsicmd);
2434  return 0;
2435  /*
2436  * These commands are all No-Ops
2437  */
2438  case TEST_UNIT_READY:
2439  if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
2440  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2442  set_sense(&dev->fsa_dev[cid].sense_data,
2444  ASENCODE_BECOMING_READY, 0, 0);
2445  memcpy(scsicmd->sense_buffer,
2446  &dev->fsa_dev[cid].sense_data,
2447  min_t(size_t,
2448  sizeof(dev->fsa_dev[cid].sense_data),
2450  scsicmd->scsi_done(scsicmd);
2451  return 0;
2452  }
2453  /* FALLTHRU */
2454  case RESERVE:
2455  case RELEASE:
2456  case REZERO_UNIT:
2457  case REASSIGN_BLOCKS:
2458  case SEEK_10:
2459  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2460  scsicmd->scsi_done(scsicmd);
2461  return 0;
2462 
2463  case START_STOP:
2464  return aac_start_stop(scsicmd);
2465  }
2466 
2467  switch (scsicmd->cmnd[0])
2468  {
2469  case READ_6:
2470  case READ_10:
2471  case READ_12:
2472  case READ_16:
2473  if (dev->in_reset)
2474  return -1;
2475  /*
2476  * Hack to keep track of ordinal number of the device that
2477  * corresponds to a container. Needed to convert
2478  * containers to /dev/sd device names
2479  */
2480 
2481  if (scsicmd->request->rq_disk)
2482  strlcpy(fsa_dev_ptr[cid].devname,
2483  scsicmd->request->rq_disk->disk_name,
2484  min(sizeof(fsa_dev_ptr[cid].devname),
2485  sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2486 
2487  return aac_read(scsicmd);
2488 
2489  case WRITE_6:
2490  case WRITE_10:
2491  case WRITE_12:
2492  case WRITE_16:
2493  if (dev->in_reset)
2494  return -1;
2495  return aac_write(scsicmd);
2496 
2497  case SYNCHRONIZE_CACHE:
2498  if (((aac_cache & 6) == 6) && dev->cache_protected) {
2499  scsicmd->result = DID_OK << 16 |
2501  scsicmd->scsi_done(scsicmd);
2502  return 0;
2503  }
2504  /* Issue FIB to tell Firmware to flush it's cache */
2505  if ((aac_cache & 6) != 2)
2506  return aac_synchronize(scsicmd);
2507  /* FALLTHRU */
2508  default:
2509  /*
2510  * Unhandled commands
2511  */
2512  dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2513  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2514  set_sense(&dev->fsa_dev[cid].sense_data,
2516  ASENCODE_INVALID_COMMAND, 0, 0);
2517  memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2518  min_t(size_t,
2519  sizeof(dev->fsa_dev[cid].sense_data),
2521  scsicmd->scsi_done(scsicmd);
2522  return 0;
2523  }
2524 }
2525 
2526 static int query_disk(struct aac_dev *dev, void __user *arg)
2527 {
2528  struct aac_query_disk qd;
2529  struct fsa_dev_info *fsa_dev_ptr;
2530 
2531  fsa_dev_ptr = dev->fsa_dev;
2532  if (!fsa_dev_ptr)
2533  return -EBUSY;
2534  if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2535  return -EFAULT;
2536  if (qd.cnum == -1)
2537  qd.cnum = qd.id;
2538  else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2539  {
2540  if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2541  return -EINVAL;
2542  qd.instance = dev->scsi_host_ptr->host_no;
2543  qd.bus = 0;
2544  qd.id = CONTAINER_TO_ID(qd.cnum);
2545  qd.lun = CONTAINER_TO_LUN(qd.cnum);
2546  }
2547  else return -EINVAL;
2548 
2549  qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2550  qd.locked = fsa_dev_ptr[qd.cnum].locked;
2551  qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2552 
2553  if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2554  qd.unmapped = 1;
2555  else
2556  qd.unmapped = 0;
2557 
2558  strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2559  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2560 
2561  if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2562  return -EFAULT;
2563  return 0;
2564 }
2565 
2566 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2567 {
2568  struct aac_delete_disk dd;
2569  struct fsa_dev_info *fsa_dev_ptr;
2570 
2571  fsa_dev_ptr = dev->fsa_dev;
2572  if (!fsa_dev_ptr)
2573  return -EBUSY;
2574 
2575  if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2576  return -EFAULT;
2577 
2578  if (dd.cnum >= dev->maximum_num_containers)
2579  return -EINVAL;
2580  /*
2581  * Mark this container as being deleted.
2582  */
2583  fsa_dev_ptr[dd.cnum].deleted = 1;
2584  /*
2585  * Mark the container as no longer valid
2586  */
2587  fsa_dev_ptr[dd.cnum].valid = 0;
2588  return 0;
2589 }
2590 
2591 static int delete_disk(struct aac_dev *dev, void __user *arg)
2592 {
2593  struct aac_delete_disk dd;
2594  struct fsa_dev_info *fsa_dev_ptr;
2595 
2596  fsa_dev_ptr = dev->fsa_dev;
2597  if (!fsa_dev_ptr)
2598  return -EBUSY;
2599 
2600  if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2601  return -EFAULT;
2602 
2603  if (dd.cnum >= dev->maximum_num_containers)
2604  return -EINVAL;
2605  /*
2606  * If the container is locked, it can not be deleted by the API.
2607  */
2608  if (fsa_dev_ptr[dd.cnum].locked)
2609  return -EBUSY;
2610  else {
2611  /*
2612  * Mark the container as no longer being valid.
2613  */
2614  fsa_dev_ptr[dd.cnum].valid = 0;
2615  fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2616  return 0;
2617  }
2618 }
2619 
2620 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2621 {
2622  switch (cmd) {
2623  case FSACTL_QUERY_DISK:
2624  return query_disk(dev, arg);
2625  case FSACTL_DELETE_DISK:
2626  return delete_disk(dev, arg);
2628  return force_delete_disk(dev, arg);
2629  case FSACTL_GET_CONTAINERS:
2630  return aac_get_containers(dev);
2631  default:
2632  return -ENOTTY;
2633  }
2634 }
2635 
2646 static void aac_srb_callback(void *context, struct fib * fibptr)
2647 {
2648  struct aac_dev *dev;
2649  struct aac_srb_reply *srbreply;
2650  struct scsi_cmnd *scsicmd;
2651 
2652  scsicmd = (struct scsi_cmnd *) context;
2653 
2654  if (!aac_valid_context(scsicmd, fibptr))
2655  return;
2656 
2657  BUG_ON(fibptr == NULL);
2658 
2659  dev = fibptr->dev;
2660 
2661  srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2662 
2663  scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
2664 
2665  if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
2666  /* fast response */
2668  srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
2669  } else {
2670  /*
2671  * Calculate resid for sg
2672  */
2673  scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2674  - le32_to_cpu(srbreply->data_xfer_length));
2675  }
2676 
2677  scsi_dma_unmap(scsicmd);
2678 
2679  /* expose physical device if expose_physicald flag is on */
2680  if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
2681  && expose_physicals > 0)
2682  aac_expose_phy_device(scsicmd);
2683 
2684  /*
2685  * First check the fib status
2686  */
2687 
2688  if (le32_to_cpu(srbreply->status) != ST_OK){
2689  int len;
2690  printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2691  len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2693  scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2694  memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2695  }
2696 
2697  /*
2698  * Next check the srb status
2699  */
2700  switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2702  case SRB_STATUS_PENDING:
2703  case SRB_STATUS_SUCCESS:
2704  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2705  break;
2707  switch(scsicmd->cmnd[0]){
2708  case READ_6:
2709  case WRITE_6:
2710  case READ_10:
2711  case WRITE_10:
2712  case READ_12:
2713  case WRITE_12:
2714  case READ_16:
2715  case WRITE_16:
2716  if (le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow) {
2717  printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2718  } else {
2719  printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2720  }
2721  scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2722  break;
2723  case INQUIRY: {
2724  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2725  break;
2726  }
2727  default:
2728  scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2729  break;
2730  }
2731  break;
2732  case SRB_STATUS_ABORTED:
2733  scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2734  break;
2736  // Not sure about this one - but assuming the hba was trying to abort for some reason
2737  scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2738  break;
2740  scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2741  break;
2742  case SRB_STATUS_NO_DEVICE:
2747  scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2748  break;
2749 
2751  case SRB_STATUS_TIMEOUT:
2752  scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2753  break;
2754 
2755  case SRB_STATUS_BUSY:
2756  scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
2757  break;
2758 
2759  case SRB_STATUS_BUS_RESET:
2760  scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2761  break;
2762 
2764  scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2765  break;
2767  case SRB_STATUS_ERROR:
2770  case SRB_STATUS_NO_HBA:
2777  case SRB_STATUS_NOT_IN_USE:
2780  default:
2781 #ifdef AAC_DETAILED_STATUS_INFO
2782  printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2783  le32_to_cpu(srbreply->srb_status) & 0x3F,
2784  aac_get_status_string(
2785  le32_to_cpu(srbreply->srb_status) & 0x3F),
2786  scsicmd->cmnd[0],
2787  le32_to_cpu(srbreply->scsi_status));
2788 #endif
2789  if ((scsicmd->cmnd[0] == ATA_12)
2790  || (scsicmd->cmnd[0] == ATA_16)) {
2791  if (scsicmd->cmnd[2] & (0x01 << 5)) {
2792  scsicmd->result = DID_OK << 16
2793  | COMMAND_COMPLETE << 8;
2794  break;
2795  } else {
2796  scsicmd->result = DID_ERROR << 16
2797  | COMMAND_COMPLETE << 8;
2798  break;
2799  }
2800  } else {
2801  scsicmd->result = DID_ERROR << 16
2802  | COMMAND_COMPLETE << 8;
2803  break;
2804  }
2805  }
2806  if (le32_to_cpu(srbreply->scsi_status) == SAM_STAT_CHECK_CONDITION) {
2807  int len;
2808  scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2809  len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2811 #ifdef AAC_DETAILED_STATUS_INFO
2812  printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2813  le32_to_cpu(srbreply->status), len);
2814 #endif
2815  memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2816  }
2817  /*
2818  * OR in the scsi status (already shifted up a bit)
2819  */
2820  scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2821 
2822  aac_fib_complete(fibptr);
2823  aac_fib_free(fibptr);
2824  scsicmd->scsi_done(scsicmd);
2825 }
2826 
2836 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2837 {
2838  struct fib* cmd_fibcontext;
2839  struct aac_dev* dev;
2840  int status;
2841 
2842  dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2843  if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2844  scsicmd->device->lun > 7) {
2845  scsicmd->result = DID_NO_CONNECT << 16;
2846  scsicmd->scsi_done(scsicmd);
2847  return 0;
2848  }
2849 
2850  /*
2851  * Allocate and initialize a Fib then setup a BlockWrite command
2852  */
2853  if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2854  return -1;
2855  }
2856  status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2857 
2858  /*
2859  * Check that the command queued to the controller
2860  */
2861  if (status == -EINPROGRESS) {
2862  scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2863  return 0;
2864  }
2865 
2866  printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2867  aac_fib_complete(cmd_fibcontext);
2868  aac_fib_free(cmd_fibcontext);
2869 
2870  return -1;
2871 }
2872 
2873 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2874 {
2875  struct aac_dev *dev;
2876  unsigned long byte_count = 0;
2877  int nseg;
2878 
2879  dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2880  // Get rid of old data
2881  psg->count = 0;
2882  psg->sg[0].addr = 0;
2883  psg->sg[0].count = 0;
2884 
2885  nseg = scsi_dma_map(scsicmd);
2886  BUG_ON(nseg < 0);
2887  if (nseg) {
2888  struct scatterlist *sg;
2889  int i;
2890 
2891  psg->count = cpu_to_le32(nseg);
2892 
2893  scsi_for_each_sg(scsicmd, sg, nseg, i) {
2894  psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2895  psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2896  byte_count += sg_dma_len(sg);
2897  }
2898  /* hba wants the size to be exact */
2899  if (byte_count > scsi_bufflen(scsicmd)) {
2900  u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2901  (byte_count - scsi_bufflen(scsicmd));
2902  psg->sg[i-1].count = cpu_to_le32(temp);
2903  byte_count = scsi_bufflen(scsicmd);
2904  }
2905  /* Check for command underflow */
2906  if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2907  printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2908  byte_count, scsicmd->underflow);
2909  }
2910  }
2911  return byte_count;
2912 }
2913 
2914 
2915 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2916 {
2917  struct aac_dev *dev;
2918  unsigned long byte_count = 0;
2919  u64 addr;
2920  int nseg;
2921 
2922  dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2923  // Get rid of old data
2924  psg->count = 0;
2925  psg->sg[0].addr[0] = 0;
2926  psg->sg[0].addr[1] = 0;
2927  psg->sg[0].count = 0;
2928 
2929  nseg = scsi_dma_map(scsicmd);
2930  BUG_ON(nseg < 0);
2931  if (nseg) {
2932  struct scatterlist *sg;
2933  int i;
2934 
2935  scsi_for_each_sg(scsicmd, sg, nseg, i) {
2936  int count = sg_dma_len(sg);
2937  addr = sg_dma_address(sg);
2938  psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2939  psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2940  psg->sg[i].count = cpu_to_le32(count);
2941  byte_count += count;
2942  }
2943  psg->count = cpu_to_le32(nseg);
2944  /* hba wants the size to be exact */
2945  if (byte_count > scsi_bufflen(scsicmd)) {
2946  u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2947  (byte_count - scsi_bufflen(scsicmd));
2948  psg->sg[i-1].count = cpu_to_le32(temp);
2949  byte_count = scsi_bufflen(scsicmd);
2950  }
2951  /* Check for command underflow */
2952  if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2953  printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2954  byte_count, scsicmd->underflow);
2955  }
2956  }
2957  return byte_count;
2958 }
2959 
2960 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2961 {
2962  unsigned long byte_count = 0;
2963  int nseg;
2964 
2965  // Get rid of old data
2966  psg->count = 0;
2967  psg->sg[0].next = 0;
2968  psg->sg[0].prev = 0;
2969  psg->sg[0].addr[0] = 0;
2970  psg->sg[0].addr[1] = 0;
2971  psg->sg[0].count = 0;
2972  psg->sg[0].flags = 0;
2973 
2974  nseg = scsi_dma_map(scsicmd);
2975  BUG_ON(nseg < 0);
2976  if (nseg) {
2977  struct scatterlist *sg;
2978  int i;
2979 
2980  scsi_for_each_sg(scsicmd, sg, nseg, i) {
2981  int count = sg_dma_len(sg);
2982  u64 addr = sg_dma_address(sg);
2983  psg->sg[i].next = 0;
2984  psg->sg[i].prev = 0;
2985  psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2986  psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2987  psg->sg[i].count = cpu_to_le32(count);
2988  psg->sg[i].flags = 0;
2989  byte_count += count;
2990  }
2991  psg->count = cpu_to_le32(nseg);
2992  /* hba wants the size to be exact */
2993  if (byte_count > scsi_bufflen(scsicmd)) {
2994  u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2995  (byte_count - scsi_bufflen(scsicmd));
2996  psg->sg[i-1].count = cpu_to_le32(temp);
2997  byte_count = scsi_bufflen(scsicmd);
2998  }
2999  /* Check for command underflow */
3000  if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
3001  printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3002  byte_count, scsicmd->underflow);
3003  }
3004  }
3005  return byte_count;
3006 }
3007 
3008 static unsigned long aac_build_sgraw2(struct scsi_cmnd *scsicmd, struct aac_raw_io2 *rio2, int sg_max)
3009 {
3010  unsigned long byte_count = 0;
3011  int nseg;
3012 
3013  nseg = scsi_dma_map(scsicmd);
3014  BUG_ON(nseg < 0);
3015  if (nseg) {
3016  struct scatterlist *sg;
3017  int i, conformable = 0;
3018  u32 min_size = PAGE_SIZE, cur_size;
3019 
3020  scsi_for_each_sg(scsicmd, sg, nseg, i) {
3021  int count = sg_dma_len(sg);
3022  u64 addr = sg_dma_address(sg);
3023 
3024  BUG_ON(i >= sg_max);
3025  rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
3026  rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
3027  cur_size = cpu_to_le32(count);
3028  rio2->sge[i].length = cur_size;
3029  rio2->sge[i].flags = 0;
3030  if (i == 0) {
3031  conformable = 1;
3032  rio2->sgeFirstSize = cur_size;
3033  } else if (i == 1) {
3034  rio2->sgeNominalSize = cur_size;
3035  min_size = cur_size;
3036  } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
3037  conformable = 0;
3038  if (cur_size < min_size)
3039  min_size = cur_size;
3040  }
3041  byte_count += count;
3042  }
3043 
3044  /* hba wants the size to be exact */
3045  if (byte_count > scsi_bufflen(scsicmd)) {
3046  u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
3047  (byte_count - scsi_bufflen(scsicmd));
3048  rio2->sge[i-1].length = cpu_to_le32(temp);
3049  byte_count = scsi_bufflen(scsicmd);
3050  }
3051 
3052  rio2->sgeCnt = cpu_to_le32(nseg);
3054  /* not conformable: evaluate required sg elements */
3055  if (!conformable) {
3056  int j, nseg_new = nseg, err_found;
3057  for (i = min_size / PAGE_SIZE; i >= 1; --i) {
3058  err_found = 0;
3059  nseg_new = 2;
3060  for (j = 1; j < nseg - 1; ++j) {
3061  if (rio2->sge[j].length % (i*PAGE_SIZE)) {
3062  err_found = 1;
3063  break;
3064  }
3065  nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
3066  }
3067  if (!err_found)
3068  break;
3069  }
3070  if (i > 0 && nseg_new <= sg_max)
3071  aac_convert_sgraw2(rio2, i, nseg, nseg_new);
3072  } else
3074 
3075  /* Check for command underflow */
3076  if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3077  printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3078  byte_count, scsicmd->underflow);
3079  }
3080  }
3081 
3082  return byte_count;
3083 }
3084 
3085 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
3086 {
3087  struct sge_ieee1212 *sge;
3088  int i, j, pos;
3089  u32 addr_low;
3090 
3091  if (aac_convert_sgl == 0)
3092  return 0;
3093 
3094  sge = kmalloc(nseg_new * sizeof(struct sge_ieee1212), GFP_ATOMIC);
3095  if (sge == NULL)
3096  return -1;
3097 
3098  for (i = 1, pos = 1; i < nseg-1; ++i) {
3099  for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
3100  addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
3101  sge[pos].addrLow = addr_low;
3102  sge[pos].addrHigh = rio2->sge[i].addrHigh;
3103  if (addr_low < rio2->sge[i].addrLow)
3104  sge[pos].addrHigh++;
3105  sge[pos].length = pages * PAGE_SIZE;
3106  sge[pos].flags = 0;
3107  pos++;
3108  }
3109  }
3110  sge[pos] = rio2->sge[nseg-1];
3111  memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
3112 
3113  kfree(sge);
3114  rio2->sgeCnt = cpu_to_le32(nseg_new);
3116  rio2->sgeNominalSize = pages * PAGE_SIZE;
3117  return 0;
3118 }
3119 
3120 #ifdef AAC_DETAILED_STATUS_INFO
3121 
3122 struct aac_srb_status_info {
3123  u32 status;
3124  char *str;
3125 };
3126 
3127 
3128 static struct aac_srb_status_info srb_status_info[] = {
3129  { SRB_STATUS_PENDING, "Pending Status"},
3130  { SRB_STATUS_SUCCESS, "Success"},
3131  { SRB_STATUS_ABORTED, "Aborted Command"},
3132  { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
3133  { SRB_STATUS_ERROR, "Error Event"},
3134  { SRB_STATUS_BUSY, "Device Busy"},
3135  { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
3136  { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
3137  { SRB_STATUS_NO_DEVICE, "No Device"},
3138  { SRB_STATUS_TIMEOUT, "Timeout"},
3139  { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
3140  { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
3141  { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
3142  { SRB_STATUS_BUS_RESET, "Bus Reset"},
3143  { SRB_STATUS_PARITY_ERROR, "Parity Error"},
3144  { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
3145  { SRB_STATUS_NO_HBA, "No HBA"},
3146  { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
3147  { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
3148  { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
3149  { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
3150  { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
3151  { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
3152  { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
3153  { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
3154  { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
3155  { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
3156  { SRB_STATUS_NOT_STARTED, "Not Started"},
3157  { SRB_STATUS_NOT_IN_USE, "Not In Use"},
3158  { SRB_STATUS_FORCE_ABORT, "Force Abort"},
3159  { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
3160  { 0xff, "Unknown Error"}
3161 };
3162 
3163 char *aac_get_status_string(u32 status)
3164 {
3165  int i;
3166 
3167  for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
3168  if (srb_status_info[i].status == status)
3169  return srb_status_info[i].str;
3170 
3171  return "Bad Status Code";
3172 }
3173 
3174 #endif