Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
acpi_pad.c
Go to the documentation of this file.
1 /*
2  * acpi_pad.c ACPI Processor Aggregator Driver
3  *
4  * Copyright (c) 2009, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/cpumask.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28 #include <linux/cpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/slab.h>
31 #include <acpi/acpi_bus.h>
32 #include <acpi/acpi_drivers.h>
33 #include <asm/mwait.h>
34 
35 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
36 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
37 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
38 static DEFINE_MUTEX(isolated_cpus_lock);
39 static DEFINE_MUTEX(round_robin_lock);
40 
41 static unsigned long power_saving_mwait_eax;
42 
43 static unsigned char tsc_detected_unstable;
44 static unsigned char tsc_marked_unstable;
45 static unsigned char lapic_detected_unstable;
46 static unsigned char lapic_marked_unstable;
47 
48 static void power_saving_mwait_init(void)
49 {
50  unsigned int eax, ebx, ecx, edx;
51  unsigned int highest_cstate = 0;
52  unsigned int highest_subcstate = 0;
53  int i;
54 
55  if (!boot_cpu_has(X86_FEATURE_MWAIT))
56  return;
57  if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
58  return;
59 
60  cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
61 
62  if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
64  return;
65 
66  edx >>= MWAIT_SUBSTATE_SIZE;
67  for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
68  if (edx & MWAIT_SUBSTATE_MASK) {
69  highest_cstate = i;
70  highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
71  }
72  }
73  power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
74  (highest_subcstate - 1);
75 
76 #if defined(CONFIG_X86)
77  switch (boot_cpu_data.x86_vendor) {
78  case X86_VENDOR_AMD:
79  case X86_VENDOR_INTEL:
80  /*
81  * AMD Fam10h TSC will tick in all
82  * C/P/S0/S1 states when this bit is set.
83  */
84  if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
85  tsc_detected_unstable = 1;
86  if (!boot_cpu_has(X86_FEATURE_ARAT))
87  lapic_detected_unstable = 1;
88  break;
89  default:
90  /* TSC & LAPIC could halt in idle */
91  tsc_detected_unstable = 1;
92  lapic_detected_unstable = 1;
93  }
94 #endif
95 }
96 
97 static unsigned long cpu_weight[NR_CPUS];
98 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
99 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
100 static void round_robin_cpu(unsigned int tsk_index)
101 {
102  struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
104  int cpu;
105  unsigned long min_weight = -1;
106  unsigned long uninitialized_var(preferred_cpu);
107 
108  if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
109  return;
110 
111  mutex_lock(&round_robin_lock);
112  cpumask_clear(tmp);
113  for_each_cpu(cpu, pad_busy_cpus)
114  cpumask_or(tmp, tmp, topology_thread_cpumask(cpu));
115  cpumask_andnot(tmp, cpu_online_mask, tmp);
116  /* avoid HT sibilings if possible */
117  if (cpumask_empty(tmp))
118  cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
119  if (cpumask_empty(tmp)) {
120  mutex_unlock(&round_robin_lock);
121  return;
122  }
123  for_each_cpu(cpu, tmp) {
124  if (cpu_weight[cpu] < min_weight) {
125  min_weight = cpu_weight[cpu];
126  preferred_cpu = cpu;
127  }
128  }
129 
130  if (tsk_in_cpu[tsk_index] != -1)
131  cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
132  tsk_in_cpu[tsk_index] = preferred_cpu;
133  cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
134  cpu_weight[preferred_cpu]++;
135  mutex_unlock(&round_robin_lock);
136 
137  set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
138 }
139 
140 static void exit_round_robin(unsigned int tsk_index)
141 {
142  struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
143  cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
144  tsk_in_cpu[tsk_index] = -1;
145 }
146 
147 static unsigned int idle_pct = 5; /* percentage */
148 static unsigned int round_robin_time = 1; /* second */
149 static int power_saving_thread(void *data)
150 {
151  struct sched_param param = {.sched_priority = 1};
152  int do_sleep;
153  unsigned int tsk_index = (unsigned long)data;
154  u64 last_jiffies = 0;
155 
157 
158  while (!kthread_should_stop()) {
159  int cpu;
160  u64 expire_time;
161 
162  try_to_freeze();
163 
164  /* round robin to cpus */
165  if (last_jiffies + round_robin_time * HZ < jiffies) {
166  last_jiffies = jiffies;
167  round_robin_cpu(tsk_index);
168  }
169 
170  do_sleep = 0;
171 
172  expire_time = jiffies + HZ * (100 - idle_pct) / 100;
173 
174  while (!need_resched()) {
175  if (tsc_detected_unstable && !tsc_marked_unstable) {
176  /* TSC could halt in idle, so notify users */
177  mark_tsc_unstable("TSC halts in idle");
178  tsc_marked_unstable = 1;
179  }
180  if (lapic_detected_unstable && !lapic_marked_unstable) {
181  int i;
182  /* LAPIC could halt in idle, so notify users */
185  CLOCK_EVT_NOTIFY_BROADCAST_ON,
186  &i);
187  lapic_marked_unstable = 1;
188  }
190  cpu = smp_processor_id();
191  if (lapic_marked_unstable)
193  CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
195 
196  __monitor((void *)&current_thread_info()->flags, 0, 0);
197  smp_mb();
198  if (!need_resched())
199  __mwait(power_saving_mwait_eax, 1);
200 
202  if (lapic_marked_unstable)
204  CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
206 
207  if (jiffies > expire_time) {
208  do_sleep = 1;
209  break;
210  }
211  }
212 
213  /*
214  * current sched_rt has threshold for rt task running time.
215  * When a rt task uses 95% CPU time, the rt thread will be
216  * scheduled out for 5% CPU time to not starve other tasks. But
217  * the mechanism only works when all CPUs have RT task running,
218  * as if one CPU hasn't RT task, RT task from other CPUs will
219  * borrow CPU time from this CPU and cause RT task use > 95%
220  * CPU time. To make 'avoid starvation' work, takes a nap here.
221  */
222  if (do_sleep)
223  schedule_timeout_killable(HZ * idle_pct / 100);
224  }
225 
226  exit_round_robin(tsk_index);
227  return 0;
228 }
229 
230 static struct task_struct *ps_tsks[NR_CPUS];
231 static unsigned int ps_tsk_num;
232 static int create_power_saving_task(void)
233 {
234  int rc = -ENOMEM;
235 
236  ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
237  (void *)(unsigned long)ps_tsk_num,
238  "acpi_pad/%d", ps_tsk_num);
239  rc = IS_ERR(ps_tsks[ps_tsk_num]) ? PTR_ERR(ps_tsks[ps_tsk_num]) : 0;
240  if (!rc)
241  ps_tsk_num++;
242  else
243  ps_tsks[ps_tsk_num] = NULL;
244 
245  return rc;
246 }
247 
248 static void destroy_power_saving_task(void)
249 {
250  if (ps_tsk_num > 0) {
251  ps_tsk_num--;
252  kthread_stop(ps_tsks[ps_tsk_num]);
253  ps_tsks[ps_tsk_num] = NULL;
254  }
255 }
256 
257 static void set_power_saving_task_num(unsigned int num)
258 {
259  if (num > ps_tsk_num) {
260  while (ps_tsk_num < num) {
261  if (create_power_saving_task())
262  return;
263  }
264  } else if (num < ps_tsk_num) {
265  while (ps_tsk_num > num)
266  destroy_power_saving_task();
267  }
268 }
269 
270 static void acpi_pad_idle_cpus(unsigned int num_cpus)
271 {
272  get_online_cpus();
273 
274  num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
275  set_power_saving_task_num(num_cpus);
276 
277  put_online_cpus();
278 }
279 
280 static uint32_t acpi_pad_idle_cpus_num(void)
281 {
282  return ps_tsk_num;
283 }
284 
285 static ssize_t acpi_pad_rrtime_store(struct device *dev,
286  struct device_attribute *attr, const char *buf, size_t count)
287 {
288  unsigned long num;
289  if (strict_strtoul(buf, 0, &num))
290  return -EINVAL;
291  if (num < 1 || num >= 100)
292  return -EINVAL;
293  mutex_lock(&isolated_cpus_lock);
294  round_robin_time = num;
295  mutex_unlock(&isolated_cpus_lock);
296  return count;
297 }
298 
299 static ssize_t acpi_pad_rrtime_show(struct device *dev,
300  struct device_attribute *attr, char *buf)
301 {
302  return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
303 }
304 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
305  acpi_pad_rrtime_show,
306  acpi_pad_rrtime_store);
307 
308 static ssize_t acpi_pad_idlepct_store(struct device *dev,
309  struct device_attribute *attr, const char *buf, size_t count)
310 {
311  unsigned long num;
312  if (strict_strtoul(buf, 0, &num))
313  return -EINVAL;
314  if (num < 1 || num >= 100)
315  return -EINVAL;
316  mutex_lock(&isolated_cpus_lock);
317  idle_pct = num;
318  mutex_unlock(&isolated_cpus_lock);
319  return count;
320 }
321 
322 static ssize_t acpi_pad_idlepct_show(struct device *dev,
323  struct device_attribute *attr, char *buf)
324 {
325  return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
326 }
327 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
328  acpi_pad_idlepct_show,
329  acpi_pad_idlepct_store);
330 
331 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
332  struct device_attribute *attr, const char *buf, size_t count)
333 {
334  unsigned long num;
335  if (strict_strtoul(buf, 0, &num))
336  return -EINVAL;
337  mutex_lock(&isolated_cpus_lock);
338  acpi_pad_idle_cpus(num);
339  mutex_unlock(&isolated_cpus_lock);
340  return count;
341 }
342 
343 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
344  struct device_attribute *attr, char *buf)
345 {
346  int n = 0;
347  n = cpumask_scnprintf(buf, PAGE_SIZE-2, to_cpumask(pad_busy_cpus_bits));
348  buf[n++] = '\n';
349  buf[n] = '\0';
350  return n;
351 }
352 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
353  acpi_pad_idlecpus_show,
354  acpi_pad_idlecpus_store);
355 
356 static int acpi_pad_add_sysfs(struct acpi_device *device)
357 {
358  int result;
359 
360  result = device_create_file(&device->dev, &dev_attr_idlecpus);
361  if (result)
362  return -ENODEV;
363  result = device_create_file(&device->dev, &dev_attr_idlepct);
364  if (result) {
365  device_remove_file(&device->dev, &dev_attr_idlecpus);
366  return -ENODEV;
367  }
368  result = device_create_file(&device->dev, &dev_attr_rrtime);
369  if (result) {
370  device_remove_file(&device->dev, &dev_attr_idlecpus);
371  device_remove_file(&device->dev, &dev_attr_idlepct);
372  return -ENODEV;
373  }
374  return 0;
375 }
376 
377 static void acpi_pad_remove_sysfs(struct acpi_device *device)
378 {
379  device_remove_file(&device->dev, &dev_attr_idlecpus);
380  device_remove_file(&device->dev, &dev_attr_idlepct);
381  device_remove_file(&device->dev, &dev_attr_rrtime);
382 }
383 
384 /*
385  * Query firmware how many CPUs should be idle
386  * return -1 on failure
387  */
388 static int acpi_pad_pur(acpi_handle handle)
389 {
391  union acpi_object *package;
392  int num = -1;
393 
394  if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
395  return num;
396 
397  if (!buffer.length || !buffer.pointer)
398  return num;
399 
400  package = buffer.pointer;
401 
402  if (package->type == ACPI_TYPE_PACKAGE &&
403  package->package.count == 2 &&
404  package->package.elements[0].integer.value == 1) /* rev 1 */
405 
406  num = package->package.elements[1].integer.value;
407 
408  kfree(buffer.pointer);
409  return num;
410 }
411 
412 /* Notify firmware how many CPUs are idle */
413 static void acpi_pad_ost(acpi_handle handle, int stat,
414  uint32_t idle_cpus)
415 {
416  union acpi_object params[3] = {
417  {.type = ACPI_TYPE_INTEGER,},
418  {.type = ACPI_TYPE_INTEGER,},
419  {.type = ACPI_TYPE_BUFFER,},
420  };
421  struct acpi_object_list arg_list = {3, params};
422 
423  params[0].integer.value = ACPI_PROCESSOR_AGGREGATOR_NOTIFY;
424  params[1].integer.value = stat;
425  params[2].buffer.length = 4;
426  params[2].buffer.pointer = (void *)&idle_cpus;
427  acpi_evaluate_object(handle, "_OST", &arg_list, NULL);
428 }
429 
430 static void acpi_pad_handle_notify(acpi_handle handle)
431 {
432  int num_cpus;
433  uint32_t idle_cpus;
434 
435  mutex_lock(&isolated_cpus_lock);
436  num_cpus = acpi_pad_pur(handle);
437  if (num_cpus < 0) {
438  mutex_unlock(&isolated_cpus_lock);
439  return;
440  }
441  acpi_pad_idle_cpus(num_cpus);
442  idle_cpus = acpi_pad_idle_cpus_num();
443  acpi_pad_ost(handle, 0, idle_cpus);
444  mutex_unlock(&isolated_cpus_lock);
445 }
446 
447 static void acpi_pad_notify(acpi_handle handle, u32 event,
448  void *data)
449 {
450  struct acpi_device *device = data;
451 
452  switch (event) {
454  acpi_pad_handle_notify(handle);
455  acpi_bus_generate_proc_event(device, event, 0);
456  acpi_bus_generate_netlink_event(device->pnp.device_class,
457  dev_name(&device->dev), event, 0);
458  break;
459  default:
460  printk(KERN_WARNING "Unsupported event [0x%x]\n", event);
461  break;
462  }
463 }
464 
465 static int acpi_pad_add(struct acpi_device *device)
466 {
468 
469  strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
470  strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
471 
472  if (acpi_pad_add_sysfs(device))
473  return -ENODEV;
474 
475  status = acpi_install_notify_handler(device->handle,
476  ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
477  if (ACPI_FAILURE(status)) {
478  acpi_pad_remove_sysfs(device);
479  return -ENODEV;
480  }
481 
482  return 0;
483 }
484 
485 static int acpi_pad_remove(struct acpi_device *device,
486  int type)
487 {
488  mutex_lock(&isolated_cpus_lock);
489  acpi_pad_idle_cpus(0);
490  mutex_unlock(&isolated_cpus_lock);
491 
492  acpi_remove_notify_handler(device->handle,
493  ACPI_DEVICE_NOTIFY, acpi_pad_notify);
494  acpi_pad_remove_sysfs(device);
495  return 0;
496 }
497 
498 static const struct acpi_device_id pad_device_ids[] = {
499  {"ACPI000C", 0},
500  {"", 0},
501 };
502 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
503 
504 static struct acpi_driver acpi_pad_driver = {
505  .name = "processor_aggregator",
507  .ids = pad_device_ids,
508  .ops = {
509  .add = acpi_pad_add,
510  .remove = acpi_pad_remove,
511  },
512 };
513 
514 static int __init acpi_pad_init(void)
515 {
516  power_saving_mwait_init();
517  if (power_saving_mwait_eax == 0)
518  return -EINVAL;
519 
520  return acpi_bus_register_driver(&acpi_pad_driver);
521 }
522 
523 static void __exit acpi_pad_exit(void)
524 {
525  acpi_bus_unregister_driver(&acpi_pad_driver);
526 }
527 
528 module_init(acpi_pad_init);
529 module_exit(acpi_pad_exit);
530 MODULE_AUTHOR("Shaohua Li<[email protected]>");
531 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
532 MODULE_LICENSE("GPL");