Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ad7280a.c
Go to the documentation of this file.
1 /*
2  * AD7280A Lithium Ion Battery Monitoring System
3  *
4  * Copyright 2011 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2.
7  */
8 
9 #include <linux/device.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/sysfs.h>
13 #include <linux/spi/spi.h>
14 #include <linux/err.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/events.h>
22 
23 #include "ad7280a.h"
24 
25 /* Registers */
26 #define AD7280A_CELL_VOLTAGE_1 0x0 /* D11 to D0, Read only */
27 #define AD7280A_CELL_VOLTAGE_2 0x1 /* D11 to D0, Read only */
28 #define AD7280A_CELL_VOLTAGE_3 0x2 /* D11 to D0, Read only */
29 #define AD7280A_CELL_VOLTAGE_4 0x3 /* D11 to D0, Read only */
30 #define AD7280A_CELL_VOLTAGE_5 0x4 /* D11 to D0, Read only */
31 #define AD7280A_CELL_VOLTAGE_6 0x5 /* D11 to D0, Read only */
32 #define AD7280A_AUX_ADC_1 0x6 /* D11 to D0, Read only */
33 #define AD7280A_AUX_ADC_2 0x7 /* D11 to D0, Read only */
34 #define AD7280A_AUX_ADC_3 0x8 /* D11 to D0, Read only */
35 #define AD7280A_AUX_ADC_4 0x9 /* D11 to D0, Read only */
36 #define AD7280A_AUX_ADC_5 0xA /* D11 to D0, Read only */
37 #define AD7280A_AUX_ADC_6 0xB /* D11 to D0, Read only */
38 #define AD7280A_SELF_TEST 0xC /* D11 to D0, Read only */
39 #define AD7280A_CONTROL_HB 0xD /* D15 to D8, Read/write */
40 #define AD7280A_CONTROL_LB 0xE /* D7 to D0, Read/write */
41 #define AD7280A_CELL_OVERVOLTAGE 0xF /* D7 to D0, Read/write */
42 #define AD7280A_CELL_UNDERVOLTAGE 0x10 /* D7 to D0, Read/write */
43 #define AD7280A_AUX_ADC_OVERVOLTAGE 0x11 /* D7 to D0, Read/write */
44 #define AD7280A_AUX_ADC_UNDERVOLTAGE 0x12 /* D7 to D0, Read/write */
45 #define AD7280A_ALERT 0x13 /* D7 to D0, Read/write */
46 #define AD7280A_CELL_BALANCE 0x14 /* D7 to D0, Read/write */
47 #define AD7280A_CB1_TIMER 0x15 /* D7 to D0, Read/write */
48 #define AD7280A_CB2_TIMER 0x16 /* D7 to D0, Read/write */
49 #define AD7280A_CB3_TIMER 0x17 /* D7 to D0, Read/write */
50 #define AD7280A_CB4_TIMER 0x18 /* D7 to D0, Read/write */
51 #define AD7280A_CB5_TIMER 0x19 /* D7 to D0, Read/write */
52 #define AD7280A_CB6_TIMER 0x1A /* D7 to D0, Read/write */
53 #define AD7280A_PD_TIMER 0x1B /* D7 to D0, Read/write */
54 #define AD7280A_READ 0x1C /* D7 to D0, Read/write */
55 #define AD7280A_CNVST_CONTROL 0x1D /* D7 to D0, Read/write */
56 
57 /* Bits and Masks */
58 #define AD7280A_CTRL_HB_CONV_INPUT_ALL (0 << 6)
59 #define AD7280A_CTRL_HB_CONV_INPUT_6CELL_AUX1_3_4 (1 << 6)
60 #define AD7280A_CTRL_HB_CONV_INPUT_6CELL (2 << 6)
61 #define AD7280A_CTRL_HB_CONV_INPUT_SELF_TEST (3 << 6)
62 #define AD7280A_CTRL_HB_CONV_RES_READ_ALL (0 << 4)
63 #define AD7280A_CTRL_HB_CONV_RES_READ_6CELL_AUX1_3_4 (1 << 4)
64 #define AD7280A_CTRL_HB_CONV_RES_READ_6CELL (2 << 4)
65 #define AD7280A_CTRL_HB_CONV_RES_READ_NO (3 << 4)
66 #define AD7280A_CTRL_HB_CONV_START_CNVST (0 << 3)
67 #define AD7280A_CTRL_HB_CONV_START_CS (1 << 3)
68 #define AD7280A_CTRL_HB_CONV_AVG_DIS (0 << 1)
69 #define AD7280A_CTRL_HB_CONV_AVG_2 (1 << 1)
70 #define AD7280A_CTRL_HB_CONV_AVG_4 (2 << 1)
71 #define AD7280A_CTRL_HB_CONV_AVG_8 (3 << 1)
72 #define AD7280A_CTRL_HB_CONV_AVG(x) ((x) << 1)
73 #define AD7280A_CTRL_HB_PWRDN_SW (1 << 0)
74 
75 #define AD7280A_CTRL_LB_SWRST (1 << 7)
76 #define AD7280A_CTRL_LB_ACQ_TIME_400ns (0 << 5)
77 #define AD7280A_CTRL_LB_ACQ_TIME_800ns (1 << 5)
78 #define AD7280A_CTRL_LB_ACQ_TIME_1200ns (2 << 5)
79 #define AD7280A_CTRL_LB_ACQ_TIME_1600ns (3 << 5)
80 #define AD7280A_CTRL_LB_ACQ_TIME(x) ((x) << 5)
81 #define AD7280A_CTRL_LB_MUST_SET (1 << 4)
82 #define AD7280A_CTRL_LB_THERMISTOR_EN (1 << 3)
83 #define AD7280A_CTRL_LB_LOCK_DEV_ADDR (1 << 2)
84 #define AD7280A_CTRL_LB_INC_DEV_ADDR (1 << 1)
85 #define AD7280A_CTRL_LB_DAISY_CHAIN_RB_EN (1 << 0)
86 
87 #define AD7280A_ALERT_GEN_STATIC_HIGH (1 << 6)
88 #define AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN (3 << 6)
89 
90 #define AD7280A_ALL_CELLS (0xAD << 16)
91 
92 #define AD7280A_MAX_SPI_CLK_Hz 700000 /* < 1MHz */
93 #define AD7280A_MAX_CHAIN 8
94 #define AD7280A_CELLS_PER_DEV 6
95 #define AD7280A_BITS 12
96 #define AD7280A_NUM_CH (AD7280A_AUX_ADC_6 - \
97  AD7280A_CELL_VOLTAGE_1 + 1)
98 
99 #define AD7280A_DEVADDR_MASTER 0
100 #define AD7280A_DEVADDR_ALL 0x1F
101 /* 5-bit device address is sent LSB first */
102 #define AD7280A_DEVADDR(addr) (((addr & 0x1) << 4) | ((addr & 0x2) << 3) | \
103  (addr & 0x4) | ((addr & 0x8) >> 3) | \
104  ((addr & 0x10) >> 4))
105 
106 /* During a read a valid write is mandatory.
107  * So writing to the highest available address (Address 0x1F)
108  * and setting the address all parts bit to 0 is recommended
109  * So the TXVAL is AD7280A_DEVADDR_ALL + CRC
110  */
111 #define AD7280A_READ_TXVAL 0xF800030A
112 
113 /*
114  * AD7280 CRC
115  *
116  * P(x) = x^8 + x^5 + x^3 + x^2 + x^1 + x^0 = 0b100101111 => 0x2F
117  */
118 #define POLYNOM 0x2F
119 #define POLYNOM_ORDER 8
120 #define HIGHBIT 1 << (POLYNOM_ORDER - 1);
121 
122 struct ad7280_state {
123  struct spi_device *spi;
127  int scan_cnt;
129  unsigned char crc_tab[256];
130  unsigned char ctrl_hb;
131  unsigned char ctrl_lb;
132  unsigned char cell_threshhigh;
133  unsigned char cell_threshlow;
134  unsigned char aux_threshhigh;
135  unsigned char aux_threshlow;
136  unsigned char cb_mask[AD7280A_MAX_CHAIN];
137 };
138 
139 static void ad7280_crc8_build_table(unsigned char *crc_tab)
140 {
141  unsigned char bit, crc;
142  int cnt, i;
143 
144  for (cnt = 0; cnt < 256; cnt++) {
145  crc = cnt;
146  for (i = 0; i < 8; i++) {
147  bit = crc & HIGHBIT;
148  crc <<= 1;
149  if (bit)
150  crc ^= POLYNOM;
151  }
152  crc_tab[cnt] = crc;
153  }
154 }
155 
156 static unsigned char ad7280_calc_crc8(unsigned char *crc_tab, unsigned val)
157 {
158  unsigned char crc;
159 
160  crc = crc_tab[val >> 16 & 0xFF];
161  crc = crc_tab[crc ^ (val >> 8 & 0xFF)];
162 
163  return crc ^ (val & 0xFF);
164 }
165 
166 static int ad7280_check_crc(struct ad7280_state *st, unsigned val)
167 {
168  unsigned char crc = ad7280_calc_crc8(st->crc_tab, val >> 10);
169 
170  if (crc != ((val >> 2) & 0xFF))
171  return -EIO;
172 
173  return 0;
174 }
175 
176 /* After initiating a conversion sequence we need to wait until the
177  * conversion is done. The delay is typically in the range of 15..30 us
178  * however depending an the number of devices in the daisy chain and the
179  * number of averages taken, conversion delays and acquisition time options
180  * it may take up to 250us, in this case we better sleep instead of busy
181  * wait.
182  */
183 
184 static void ad7280_delay(struct ad7280_state *st)
185 {
186  if (st->readback_delay_us < 50)
188  else
189  msleep(1);
190 }
191 
192 static int __ad7280_read32(struct spi_device *spi, unsigned *val)
193 {
194  unsigned rx_buf, tx_buf = cpu_to_be32(AD7280A_READ_TXVAL);
195  int ret;
196 
197  struct spi_transfer t = {
198  .tx_buf = &tx_buf,
199  .rx_buf = &rx_buf,
200  .len = 4,
201  };
202  struct spi_message m;
203 
204  spi_message_init(&m);
205  spi_message_add_tail(&t, &m);
206 
207  ret = spi_sync(spi, &m);
208  if (ret)
209  return ret;
210 
211  *val = be32_to_cpu(rx_buf);
212 
213  return 0;
214 }
215 
216 static int ad7280_write(struct ad7280_state *st, unsigned devaddr,
217  unsigned addr, bool all, unsigned val)
218 {
219  unsigned reg = (devaddr << 27 | addr << 21 |
220  (val & 0xFF) << 13 | all << 12);
221 
222  reg |= ad7280_calc_crc8(st->crc_tab, reg >> 11) << 3 | 0x2;
223  reg = cpu_to_be32(reg);
224 
225  return spi_write(st->spi, &reg, 4);
226 }
227 
228 static int ad7280_read(struct ad7280_state *st, unsigned devaddr,
229  unsigned addr)
230 {
231  int ret;
232  unsigned tmp;
233 
234  /* turns off the read operation on all parts */
235  ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_HB, 1,
238  st->ctrl_hb);
239  if (ret)
240  return ret;
241 
242  /* turns on the read operation on the addressed part */
243  ret = ad7280_write(st, devaddr, AD7280A_CONTROL_HB, 0,
246  st->ctrl_hb);
247  if (ret)
248  return ret;
249 
250  /* Set register address on the part to be read from */
251  ret = ad7280_write(st, devaddr, AD7280A_READ, 0, addr << 2);
252  if (ret)
253  return ret;
254 
255  __ad7280_read32(st->spi, &tmp);
256 
257  if (ad7280_check_crc(st, tmp))
258  return -EIO;
259 
260  if (((tmp >> 27) != devaddr) || (((tmp >> 21) & 0x3F) != addr))
261  return -EFAULT;
262 
263  return (tmp >> 13) & 0xFF;
264 }
265 
266 static int ad7280_read_channel(struct ad7280_state *st, unsigned devaddr,
267  unsigned addr)
268 {
269  int ret;
270  unsigned tmp;
271 
272  ret = ad7280_write(st, devaddr, AD7280A_READ, 0, addr << 2);
273  if (ret)
274  return ret;
275 
276  ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_HB, 1,
279  st->ctrl_hb);
280  if (ret)
281  return ret;
282 
283  ret = ad7280_write(st, devaddr, AD7280A_CONTROL_HB, 0,
287  st->ctrl_hb);
288  if (ret)
289  return ret;
290 
291  ad7280_delay(st);
292 
293  __ad7280_read32(st->spi, &tmp);
294 
295  if (ad7280_check_crc(st, tmp))
296  return -EIO;
297 
298  if (((tmp >> 27) != devaddr) || (((tmp >> 23) & 0xF) != addr))
299  return -EFAULT;
300 
301  return (tmp >> 11) & 0xFFF;
302 }
303 
304 static int ad7280_read_all_channels(struct ad7280_state *st, unsigned cnt,
305  unsigned *array)
306 {
307  int i, ret;
308  unsigned tmp, sum = 0;
309 
310  ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ, 1,
312  if (ret)
313  return ret;
314 
315  ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_HB, 1,
319  st->ctrl_hb);
320  if (ret)
321  return ret;
322 
323  ad7280_delay(st);
324 
325  for (i = 0; i < cnt; i++) {
326  __ad7280_read32(st->spi, &tmp);
327 
328  if (ad7280_check_crc(st, tmp))
329  return -EIO;
330 
331  if (array)
332  array[i] = tmp;
333  /* only sum cell voltages */
334  if (((tmp >> 23) & 0xF) <= AD7280A_CELL_VOLTAGE_6)
335  sum += ((tmp >> 11) & 0xFFF);
336  }
337 
338  return sum;
339 }
340 
341 static int ad7280_chain_setup(struct ad7280_state *st)
342 {
343  unsigned val, n;
344  int ret;
345 
346  ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_LB, 1,
351  st->ctrl_lb);
352  if (ret)
353  return ret;
354 
355  ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_LB, 1,
359  st->ctrl_lb);
360  if (ret)
361  return ret;
362 
363  ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ, 1,
364  AD7280A_CONTROL_LB << 2);
365  if (ret)
366  return ret;
367 
368  for (n = 0; n <= AD7280A_MAX_CHAIN; n++) {
369  __ad7280_read32(st->spi, &val);
370  if (val == 0)
371  return n - 1;
372 
373  if (ad7280_check_crc(st, val))
374  return -EIO;
375 
376  if (n != AD7280A_DEVADDR(val >> 27))
377  return -EIO;
378  }
379 
380  return -EFAULT;
381 }
382 
383 static ssize_t ad7280_show_balance_sw(struct device *dev,
384  struct device_attribute *attr,
385  char *buf)
386 {
387  struct iio_dev *indio_dev = dev_to_iio_dev(dev);
388  struct ad7280_state *st = iio_priv(indio_dev);
389  struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
390 
391  return sprintf(buf, "%d\n",
392  !!(st->cb_mask[this_attr->address >> 8] &
393  (1 << ((this_attr->address & 0xFF) + 2))));
394 }
395 
396 static ssize_t ad7280_store_balance_sw(struct device *dev,
397  struct device_attribute *attr,
398  const char *buf,
399  size_t len)
400 {
401  struct iio_dev *indio_dev = dev_to_iio_dev(dev);
402  struct ad7280_state *st = iio_priv(indio_dev);
403  struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
404  bool readin;
405  int ret;
406  unsigned devaddr, ch;
407 
408  ret = strtobool(buf, &readin);
409  if (ret)
410  return ret;
411 
412  devaddr = this_attr->address >> 8;
413  ch = this_attr->address & 0xFF;
414 
415  mutex_lock(&indio_dev->mlock);
416  if (readin)
417  st->cb_mask[devaddr] |= 1 << (ch + 2);
418  else
419  st->cb_mask[devaddr] &= ~(1 << (ch + 2));
420 
421  ret = ad7280_write(st, devaddr, AD7280A_CELL_BALANCE,
422  0, st->cb_mask[devaddr]);
423  mutex_unlock(&indio_dev->mlock);
424 
425  return ret ? ret : len;
426 }
427 
428 static ssize_t ad7280_show_balance_timer(struct device *dev,
429  struct device_attribute *attr,
430  char *buf)
431 {
432  struct iio_dev *indio_dev = dev_to_iio_dev(dev);
433  struct ad7280_state *st = iio_priv(indio_dev);
434  struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
435  int ret;
436  unsigned msecs;
437 
438  mutex_lock(&indio_dev->mlock);
439  ret = ad7280_read(st, this_attr->address >> 8,
440  this_attr->address & 0xFF);
441  mutex_unlock(&indio_dev->mlock);
442 
443  if (ret < 0)
444  return ret;
445 
446  msecs = (ret >> 3) * 71500;
447 
448  return sprintf(buf, "%d\n", msecs);
449 }
450 
451 static ssize_t ad7280_store_balance_timer(struct device *dev,
452  struct device_attribute *attr,
453  const char *buf,
454  size_t len)
455 {
456  struct iio_dev *indio_dev = dev_to_iio_dev(dev);
457  struct ad7280_state *st = iio_priv(indio_dev);
458  struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
459  unsigned long val;
460  int ret;
461 
462  ret = kstrtoul(buf, 10, &val);
463  if (ret)
464  return ret;
465 
466  val /= 71500;
467 
468  if (val > 31)
469  return -EINVAL;
470 
471  mutex_lock(&indio_dev->mlock);
472  ret = ad7280_write(st, this_attr->address >> 8,
473  this_attr->address & 0xFF,
474  0, (val & 0x1F) << 3);
475  mutex_unlock(&indio_dev->mlock);
476 
477  return ret ? ret : len;
478 }
479 
480 static struct attribute *ad7280_attributes[AD7280A_MAX_CHAIN *
481  AD7280A_CELLS_PER_DEV * 2 + 1];
482 
483 static struct attribute_group ad7280_attrs_group = {
484  .attrs = ad7280_attributes,
485 };
486 
487 static int ad7280_channel_init(struct ad7280_state *st)
488 {
489  int dev, ch, cnt;
490 
491  st->channels = kcalloc((st->slave_num + 1) * 12 + 2,
492  sizeof(*st->channels), GFP_KERNEL);
493  if (st->channels == NULL)
494  return -ENOMEM;
495 
496  for (dev = 0, cnt = 0; dev <= st->slave_num; dev++)
497  for (ch = AD7280A_CELL_VOLTAGE_1; ch <= AD7280A_AUX_ADC_6; ch++,
498  cnt++) {
499  if (ch < AD7280A_AUX_ADC_1) {
500  st->channels[cnt].type = IIO_VOLTAGE;
501  st->channels[cnt].differential = 1;
502  st->channels[cnt].channel = (dev * 6) + ch;
503  st->channels[cnt].channel2 =
504  st->channels[cnt].channel + 1;
505  } else {
506  st->channels[cnt].type = IIO_TEMP;
507  st->channels[cnt].channel = (dev * 6) + ch - 6;
508  }
509  st->channels[cnt].indexed = 1;
510  st->channels[cnt].info_mask =
513  st->channels[cnt].address =
514  AD7280A_DEVADDR(dev) << 8 | ch;
515  st->channels[cnt].scan_index = cnt;
516  st->channels[cnt].scan_type.sign = 'u';
517  st->channels[cnt].scan_type.realbits = 12;
518  st->channels[cnt].scan_type.storagebits = 32;
519  st->channels[cnt].scan_type.shift = 0;
520  }
521 
522  st->channels[cnt].type = IIO_VOLTAGE;
523  st->channels[cnt].differential = 1;
524  st->channels[cnt].channel = 0;
525  st->channels[cnt].channel2 = dev * 6;
526  st->channels[cnt].address = AD7280A_ALL_CELLS;
527  st->channels[cnt].indexed = 1;
528  st->channels[cnt].info_mask =
531  st->channels[cnt].scan_index = cnt;
532  st->channels[cnt].scan_type.sign = 'u';
533  st->channels[cnt].scan_type.realbits = 32;
534  st->channels[cnt].scan_type.storagebits = 32;
535  st->channels[cnt].scan_type.shift = 0;
536  cnt++;
537  st->channels[cnt].type = IIO_TIMESTAMP;
538  st->channels[cnt].channel = -1;
539  st->channels[cnt].scan_index = cnt;
540  st->channels[cnt].scan_type.sign = 's';
541  st->channels[cnt].scan_type.realbits = 64;
542  st->channels[cnt].scan_type.storagebits = 64;
543  st->channels[cnt].scan_type.shift = 0;
544 
545  return cnt + 1;
546 }
547 
548 static int ad7280_attr_init(struct ad7280_state *st)
549 {
550  int dev, ch, cnt;
551 
552  st->iio_attr = kzalloc(sizeof(*st->iio_attr) * (st->slave_num + 1) *
554  if (st->iio_attr == NULL)
555  return -ENOMEM;
556 
557  for (dev = 0, cnt = 0; dev <= st->slave_num; dev++)
559  ch++, cnt++) {
560  st->iio_attr[cnt].address =
561  AD7280A_DEVADDR(dev) << 8 | ch;
562  st->iio_attr[cnt].dev_attr.attr.mode =
563  S_IWUSR | S_IRUGO;
564  st->iio_attr[cnt].dev_attr.show =
565  ad7280_show_balance_sw;
566  st->iio_attr[cnt].dev_attr.store =
567  ad7280_store_balance_sw;
568  st->iio_attr[cnt].dev_attr.attr.name =
570  "in%d-in%d_balance_switch_en",
571  (dev * AD7280A_CELLS_PER_DEV) + ch,
572  (dev * AD7280A_CELLS_PER_DEV) + ch + 1);
573  ad7280_attributes[cnt] =
574  &st->iio_attr[cnt].dev_attr.attr;
575  cnt++;
576  st->iio_attr[cnt].address =
577  AD7280A_DEVADDR(dev) << 8 |
578  (AD7280A_CB1_TIMER + ch);
579  st->iio_attr[cnt].dev_attr.attr.mode =
580  S_IWUSR | S_IRUGO;
581  st->iio_attr[cnt].dev_attr.show =
582  ad7280_show_balance_timer;
583  st->iio_attr[cnt].dev_attr.store =
584  ad7280_store_balance_timer;
585  st->iio_attr[cnt].dev_attr.attr.name =
586  kasprintf(GFP_KERNEL, "in%d-in%d_balance_timer",
587  (dev * AD7280A_CELLS_PER_DEV) + ch,
588  (dev * AD7280A_CELLS_PER_DEV) + ch + 1);
589  ad7280_attributes[cnt] =
590  &st->iio_attr[cnt].dev_attr.attr;
591  }
592 
593  ad7280_attributes[cnt] = NULL;
594 
595  return 0;
596 }
597 
598 static ssize_t ad7280_read_channel_config(struct device *dev,
599  struct device_attribute *attr,
600  char *buf)
601 {
602  struct iio_dev *indio_dev = dev_to_iio_dev(dev);
603  struct ad7280_state *st = iio_priv(indio_dev);
604  struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
605  unsigned val;
606 
607  switch ((u32) this_attr->address) {
609  val = 1000 + (st->cell_threshhigh * 1568) / 100;
610  break;
612  val = 1000 + (st->cell_threshlow * 1568) / 100;
613  break;
615  val = (st->aux_threshhigh * 196) / 10;
616  break;
618  val = (st->aux_threshlow * 196) / 10;
619  break;
620  default:
621  return -EINVAL;
622  }
623 
624  return sprintf(buf, "%d\n", val);
625 }
626 
627 static ssize_t ad7280_write_channel_config(struct device *dev,
628  struct device_attribute *attr,
629  const char *buf,
630  size_t len)
631 {
632  struct iio_dev *indio_dev = dev_to_iio_dev(dev);
633  struct ad7280_state *st = iio_priv(indio_dev);
634  struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
635 
636  long val;
637  int ret;
638 
639  ret = strict_strtol(buf, 10, &val);
640  if (ret)
641  return ret;
642 
643  switch ((u32) this_attr->address) {
646  val = ((val - 1000) * 100) / 1568; /* LSB 15.68mV */
647  break;
650  val = (val * 10) / 196; /* LSB 19.6mV */
651  break;
652  default:
653  return -EFAULT;
654  }
655 
656  val = clamp(val, 0L, 0xFFL);
657 
658  mutex_lock(&indio_dev->mlock);
659  switch ((u32) this_attr->address) {
661  st->cell_threshhigh = val;
662  break;
664  st->cell_threshlow = val;
665  break;
667  st->aux_threshhigh = val;
668  break;
670  st->aux_threshlow = val;
671  break;
672  }
673 
674  ret = ad7280_write(st, AD7280A_DEVADDR_MASTER,
675  this_attr->address, 1, val);
676 
677  mutex_unlock(&indio_dev->mlock);
678 
679  return ret ? ret : len;
680 }
681 
682 static irqreturn_t ad7280_event_handler(int irq, void *private)
683 {
684  struct iio_dev *indio_dev = private;
685  struct ad7280_state *st = iio_priv(indio_dev);
686  unsigned *channels;
687  int i, ret;
688 
689  channels = kcalloc(st->scan_cnt, sizeof(*channels), GFP_KERNEL);
690  if (channels == NULL)
691  return IRQ_HANDLED;
692 
693  ret = ad7280_read_all_channels(st, st->scan_cnt, channels);
694  if (ret < 0)
695  goto out;
696 
697  for (i = 0; i < st->scan_cnt; i++) {
698  if (((channels[i] >> 23) & 0xF) <= AD7280A_CELL_VOLTAGE_6) {
699  if (((channels[i] >> 11) & 0xFFF) >=
700  st->cell_threshhigh)
701  iio_push_event(indio_dev,
703  1,
704  0,
707  0, 0, 0),
708  iio_get_time_ns());
709  else if (((channels[i] >> 11) & 0xFFF) <=
710  st->cell_threshlow)
711  iio_push_event(indio_dev,
713  1,
714  0,
717  0, 0, 0),
718  iio_get_time_ns());
719  } else {
720  if (((channels[i] >> 11) & 0xFFF) >= st->aux_threshhigh)
721  iio_push_event(indio_dev,
723  0,
726  iio_get_time_ns());
727  else if (((channels[i] >> 11) & 0xFFF) <=
728  st->aux_threshlow)
729  iio_push_event(indio_dev,
731  0,
734  iio_get_time_ns());
735  }
736  }
737 
738 out:
739  kfree(channels);
740 
741  return IRQ_HANDLED;
742 }
743 
744 static IIO_DEVICE_ATTR_NAMED(in_thresh_low_value,
745  in_voltage-voltage_thresh_low_value,
746  S_IRUGO | S_IWUSR,
747  ad7280_read_channel_config,
748  ad7280_write_channel_config,
750 
751 static IIO_DEVICE_ATTR_NAMED(in_thresh_high_value,
752  in_voltage-voltage_thresh_high_value,
753  S_IRUGO | S_IWUSR,
754  ad7280_read_channel_config,
755  ad7280_write_channel_config,
757 
758 static IIO_DEVICE_ATTR(in_temp_thresh_low_value,
759  S_IRUGO | S_IWUSR,
760  ad7280_read_channel_config,
761  ad7280_write_channel_config,
763 
764 static IIO_DEVICE_ATTR(in_temp_thresh_high_value,
765  S_IRUGO | S_IWUSR,
766  ad7280_read_channel_config,
767  ad7280_write_channel_config,
769 
770 
771 static struct attribute *ad7280_event_attributes[] = {
772  &iio_dev_attr_in_thresh_low_value.dev_attr.attr,
773  &iio_dev_attr_in_thresh_high_value.dev_attr.attr,
774  &iio_dev_attr_in_temp_thresh_low_value.dev_attr.attr,
775  &iio_dev_attr_in_temp_thresh_high_value.dev_attr.attr,
776  NULL,
777 };
778 
779 static struct attribute_group ad7280_event_attrs_group = {
780  .attrs = ad7280_event_attributes,
781 };
782 
783 static int ad7280_read_raw(struct iio_dev *indio_dev,
784  struct iio_chan_spec const *chan,
785  int *val,
786  int *val2,
787  long m)
788 {
789  struct ad7280_state *st = iio_priv(indio_dev);
790  unsigned int scale_uv;
791  int ret;
792 
793  switch (m) {
794  case IIO_CHAN_INFO_RAW:
795  mutex_lock(&indio_dev->mlock);
796  if (chan->address == AD7280A_ALL_CELLS)
797  ret = ad7280_read_all_channels(st, st->scan_cnt, NULL);
798  else
799  ret = ad7280_read_channel(st, chan->address >> 8,
800  chan->address & 0xFF);
801  mutex_unlock(&indio_dev->mlock);
802 
803  if (ret < 0)
804  return ret;
805 
806  *val = ret;
807 
808  return IIO_VAL_INT;
809  case IIO_CHAN_INFO_SCALE:
810  if ((chan->address & 0xFF) <= AD7280A_CELL_VOLTAGE_6)
811  scale_uv = (4000 * 1000) >> AD7280A_BITS;
812  else
813  scale_uv = (5000 * 1000) >> AD7280A_BITS;
814 
815  *val = scale_uv / 1000;
816  *val2 = (scale_uv % 1000) * 1000;
817  return IIO_VAL_INT_PLUS_MICRO;
818  }
819  return -EINVAL;
820 }
821 
822 static const struct iio_info ad7280_info = {
823  .read_raw = &ad7280_read_raw,
824  .event_attrs = &ad7280_event_attrs_group,
825  .attrs = &ad7280_attrs_group,
826  .driver_module = THIS_MODULE,
827 };
828 
829 static const struct ad7280_platform_data ad7793_default_pdata = {
830  .acquisition_time = AD7280A_ACQ_TIME_400ns,
831  .conversion_averaging = AD7280A_CONV_AVG_DIS,
832  .thermistor_term_en = true,
833 };
834 
835 static int __devinit ad7280_probe(struct spi_device *spi)
836 {
837  const struct ad7280_platform_data *pdata = spi->dev.platform_data;
838  struct ad7280_state *st;
839  int ret;
840  const unsigned short tACQ_ns[4] = {465, 1010, 1460, 1890};
841  const unsigned short nAVG[4] = {1, 2, 4, 8};
842  struct iio_dev *indio_dev = iio_device_alloc(sizeof(*st));
843 
844  if (indio_dev == NULL)
845  return -ENOMEM;
846 
847  st = iio_priv(indio_dev);
848  spi_set_drvdata(spi, indio_dev);
849  st->spi = spi;
850 
851  if (!pdata)
852  pdata = &ad7793_default_pdata;
853 
854  ad7280_crc8_build_table(st->crc_tab);
855 
856  st->spi->max_speed_hz = AD7280A_MAX_SPI_CLK_Hz;
857  st->spi->mode = SPI_MODE_1;
858  spi_setup(st->spi);
859 
862  & 0x3) | (pdata->thermistor_term_en ?
864 
865  ret = ad7280_chain_setup(st);
866  if (ret < 0)
867  goto error_free_device;
868 
869  st->slave_num = ret;
870  st->scan_cnt = (st->slave_num + 1) * AD7280A_NUM_CH;
871  st->cell_threshhigh = 0xFF;
872  st->aux_threshhigh = 0xFF;
873 
874  /*
875  * Total Conversion Time = ((tACQ + tCONV) *
876  * (Number of Conversions per Part)) −
877  * tACQ + ((N - 1) * tDELAY)
878  *
879  * Readback Delay = Total Conversion Time + tWAIT
880  */
881 
882  st->readback_delay_us =
883  ((tACQ_ns[pdata->acquisition_time & 0x3] + 695) *
884  (AD7280A_NUM_CH * nAVG[pdata->conversion_averaging & 0x3]))
885  - tACQ_ns[pdata->acquisition_time & 0x3] +
886  st->slave_num * 250;
887 
888  /* Convert to usecs */
890  st->readback_delay_us += 5; /* Add tWAIT */
891 
892  indio_dev->name = spi_get_device_id(spi)->name;
893  indio_dev->dev.parent = &spi->dev;
894  indio_dev->modes = INDIO_DIRECT_MODE;
895 
896  ret = ad7280_channel_init(st);
897  if (ret < 0)
898  goto error_free_device;
899 
900  indio_dev->num_channels = ret;
901  indio_dev->channels = st->channels;
902  indio_dev->info = &ad7280_info;
903 
904  ret = ad7280_attr_init(st);
905  if (ret < 0)
906  goto error_free_channels;
907 
908  ret = iio_device_register(indio_dev);
909  if (ret)
910  goto error_free_attr;
911 
912  if (spi->irq > 0) {
913  ret = ad7280_write(st, AD7280A_DEVADDR_MASTER,
914  AD7280A_ALERT, 1,
916  if (ret)
917  goto error_unregister;
918 
919  ret = ad7280_write(st, AD7280A_DEVADDR(st->slave_num),
920  AD7280A_ALERT, 0,
922  (pdata->chain_last_alert_ignore & 0xF));
923  if (ret)
924  goto error_unregister;
925 
926  ret = request_threaded_irq(spi->irq,
927  NULL,
928  ad7280_event_handler,
930  IRQF_ONESHOT,
931  indio_dev->name,
932  indio_dev);
933  if (ret)
934  goto error_unregister;
935  }
936 
937  return 0;
938 error_unregister:
939  iio_device_unregister(indio_dev);
940 
941 error_free_attr:
942  kfree(st->iio_attr);
943 
944 error_free_channels:
945  kfree(st->channels);
946 
947 error_free_device:
948  iio_device_free(indio_dev);
949 
950  return ret;
951 }
952 
953 static int __devexit ad7280_remove(struct spi_device *spi)
954 {
955  struct iio_dev *indio_dev = spi_get_drvdata(spi);
956  struct ad7280_state *st = iio_priv(indio_dev);
957 
958  if (spi->irq > 0)
959  free_irq(spi->irq, indio_dev);
960  iio_device_unregister(indio_dev);
961 
962  ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_HB, 1,
964 
965  kfree(st->channels);
966  kfree(st->iio_attr);
967  iio_device_free(indio_dev);
968 
969  return 0;
970 }
971 
972 static const struct spi_device_id ad7280_id[] = {
973  {"ad7280a", 0},
974  {}
975 };
976 MODULE_DEVICE_TABLE(spi, ad7280_id);
977 
978 static struct spi_driver ad7280_driver = {
979  .driver = {
980  .name = "ad7280",
981  .owner = THIS_MODULE,
982  },
983  .probe = ad7280_probe,
984  .remove = __devexit_p(ad7280_remove),
985  .id_table = ad7280_id,
986 };
987 module_spi_driver(ad7280_driver);
988 
989 MODULE_AUTHOR("Michael Hennerich <[email protected]>");
990 MODULE_DESCRIPTION("Analog Devices AD7280A");
991 MODULE_LICENSE("GPL v2");