Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
aic79xx_pci.c
Go to the documentation of this file.
1 /*
2  * Product specific probe and attach routines for:
3  * aic7901 and aic7902 SCSI controllers
4  *
5  * Copyright (c) 1994-2001 Justin T. Gibbs.
6  * Copyright (c) 2000-2002 Adaptec Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  * notice, this list of conditions, and the following disclaimer,
14  * without modification.
15  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
16  * substantially similar to the "NO WARRANTY" disclaimer below
17  * ("Disclaimer") and any redistribution must be conditioned upon
18  * including a substantially similar Disclaimer requirement for further
19  * binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  * of any contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
37  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
38  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39  * POSSIBILITY OF SUCH DAMAGES.
40  *
41  * $Id: //depot/aic7xxx/aic7xxx/aic79xx_pci.c#92 $
42  */
43 
44 #ifdef __linux__
45 #include "aic79xx_osm.h"
46 #include "aic79xx_inline.h"
47 #else
48 #include <dev/aic7xxx/aic79xx_osm.h>
49 #include <dev/aic7xxx/aic79xx_inline.h>
50 #endif
51 
52 #include "aic79xx_pci.h"
53 
54 static inline uint64_t
56 {
57  uint64_t id;
58 
59  id = subvendor
60  | (subdevice << 16)
61  | ((uint64_t)vendor << 32)
62  | ((uint64_t)device << 48);
63 
64  return (id);
65 }
66 
67 #define ID_AIC7902_PCI_REV_A4 0x3
68 #define ID_AIC7902_PCI_REV_B0 0x10
69 #define SUBID_HP 0x0E11
70 
71 #define DEVID_9005_HOSTRAID(id) ((id) & 0x80)
72 
73 #define DEVID_9005_TYPE(id) ((id) & 0xF)
74 #define DEVID_9005_TYPE_HBA 0x0 /* Standard Card */
75 #define DEVID_9005_TYPE_HBA_2EXT 0x1 /* 2 External Ports */
76 #define DEVID_9005_TYPE_IROC 0x8 /* Raid(0,1,10) Card */
77 #define DEVID_9005_TYPE_MB 0xF /* On Motherboard */
78 
79 #define DEVID_9005_MFUNC(id) ((id) & 0x10)
80 
81 #define DEVID_9005_PACKETIZED(id) ((id) & 0x8000)
82 
83 #define SUBID_9005_TYPE(id) ((id) & 0xF)
84 #define SUBID_9005_TYPE_HBA 0x0 /* Standard Card */
85 #define SUBID_9005_TYPE_MB 0xF /* On Motherboard */
86 
87 #define SUBID_9005_AUTOTERM(id) (((id) & 0x10) == 0)
88 
89 #define SUBID_9005_LEGACYCONN_FUNC(id) ((id) & 0x20)
90 
91 #define SUBID_9005_SEEPTYPE(id) (((id) & 0x0C0) >> 6)
92 #define SUBID_9005_SEEPTYPE_NONE 0x0
93 #define SUBID_9005_SEEPTYPE_4K 0x1
94 
95 static ahd_device_setup_t ahd_aic7901_setup;
96 static ahd_device_setup_t ahd_aic7901A_setup;
97 static ahd_device_setup_t ahd_aic7902_setup;
98 static ahd_device_setup_t ahd_aic790X_setup;
99 
100 static const struct ahd_pci_identity ahd_pci_ident_table[] =
101 {
102  /* aic7901 based controllers */
103  {
105  ID_ALL_MASK,
106  "Adaptec 29320A Ultra320 SCSI adapter",
107  ahd_aic7901_setup
108  },
109  {
111  ID_ALL_MASK,
112  "Adaptec 29320ALP PCIx Ultra320 SCSI adapter",
113  ahd_aic7901_setup
114  },
115  {
117  ID_ALL_MASK,
118  "Adaptec 29320LPE PCIe Ultra320 SCSI adapter",
119  ahd_aic7901_setup
120  },
121  /* aic7901A based controllers */
122  {
124  ID_ALL_MASK,
125  "Adaptec 29320LP Ultra320 SCSI adapter",
126  ahd_aic7901A_setup
127  },
128  /* aic7902 based controllers */
129  {
130  ID_AHA_29320,
131  ID_ALL_MASK,
132  "Adaptec 29320 Ultra320 SCSI adapter",
133  ahd_aic7902_setup
134  },
135  {
137  ID_ALL_MASK,
138  "Adaptec 29320B Ultra320 SCSI adapter",
139  ahd_aic7902_setup
140  },
141  {
142  ID_AHA_39320,
143  ID_ALL_MASK,
144  "Adaptec 39320 Ultra320 SCSI adapter",
145  ahd_aic7902_setup
146  },
147  {
149  ID_ALL_MASK,
150  "Adaptec 39320 Ultra320 SCSI adapter",
151  ahd_aic7902_setup
152  },
153  {
155  ID_ALL_MASK,
156  "Adaptec (Dell OEM) 39320 Ultra320 SCSI adapter",
157  ahd_aic7902_setup
158  },
159  {
161  ID_ALL_MASK,
162  "Adaptec 39320A Ultra320 SCSI adapter",
163  ahd_aic7902_setup
164  },
165  {
167  ID_ALL_MASK,
168  "Adaptec 39320D Ultra320 SCSI adapter",
169  ahd_aic7902_setup
170  },
171  {
173  ID_ALL_MASK,
174  "Adaptec (HP OEM) 39320D Ultra320 SCSI adapter",
175  ahd_aic7902_setup
176  },
177  {
179  ID_ALL_MASK,
180  "Adaptec 39320D Ultra320 SCSI adapter",
181  ahd_aic7902_setup
182  },
183  {
185  ID_ALL_MASK,
186  "Adaptec (HP OEM) 39320D Ultra320 SCSI adapter",
187  ahd_aic7902_setup
188  },
189  /* Generic chip probes for devices we don't know 'exactly' */
190  {
193  "Adaptec AIC7901 Ultra320 SCSI adapter",
194  ahd_aic7901_setup
195  },
196  {
199  "Adaptec AIC7901A Ultra320 SCSI adapter",
200  ahd_aic7901A_setup
201  },
202  {
205  "Adaptec AIC7902 Ultra320 SCSI adapter",
206  ahd_aic7902_setup
207  }
208 };
209 
210 static const u_int ahd_num_pci_devs = ARRAY_SIZE(ahd_pci_ident_table);
211 
212 #define DEVCONFIG 0x40
213 #define PCIXINITPAT 0x0000E000ul
214 #define PCIXINIT_PCI33_66 0x0000E000ul
215 #define PCIXINIT_PCIX50_66 0x0000C000ul
216 #define PCIXINIT_PCIX66_100 0x0000A000ul
217 #define PCIXINIT_PCIX100_133 0x00008000ul
218 #define PCI_BUS_MODES_INDEX(devconfig) \
219  (((devconfig) & PCIXINITPAT) >> 13)
220 static const char *pci_bus_modes[] =
221 {
222  "PCI bus mode unknown",
223  "PCI bus mode unknown",
224  "PCI bus mode unknown",
225  "PCI bus mode unknown",
226  "PCI-X 101-133MHz",
227  "PCI-X 67-100MHz",
228  "PCI-X 50-66MHz",
229  "PCI 33 or 66MHz"
230 };
231 
232 #define TESTMODE 0x00000800ul
233 #define IRDY_RST 0x00000200ul
234 #define FRAME_RST 0x00000100ul
235 #define PCI64BIT 0x00000080ul
236 #define MRDCEN 0x00000040ul
237 #define ENDIANSEL 0x00000020ul
238 #define MIXQWENDIANEN 0x00000008ul
239 #define DACEN 0x00000004ul
240 #define STPWLEVEL 0x00000002ul
241 #define QWENDIANSEL 0x00000001ul
242 
243 #define DEVCONFIG1 0x44
244 #define PREQDIS 0x01
245 
246 #define CSIZE_LATTIME 0x0c
247 #define CACHESIZE 0x000000fful
248 #define LATTIME 0x0000ff00ul
249 
250 static int ahd_check_extport(struct ahd_softc *ahd);
251 static void ahd_configure_termination(struct ahd_softc *ahd,
252  u_int adapter_control);
253 static void ahd_pci_split_intr(struct ahd_softc *ahd, u_int intstat);
254 static void ahd_pci_intr(struct ahd_softc *ahd);
255 
256 const struct ahd_pci_identity *
258 {
260  uint16_t device;
264  const struct ahd_pci_identity *entry;
265  u_int i;
266 
267  vendor = ahd_pci_read_config(pci, PCIR_DEVVENDOR, /*bytes*/2);
268  device = ahd_pci_read_config(pci, PCIR_DEVICE, /*bytes*/2);
269  subvendor = ahd_pci_read_config(pci, PCIR_SUBVEND_0, /*bytes*/2);
270  subdevice = ahd_pci_read_config(pci, PCIR_SUBDEV_0, /*bytes*/2);
271  full_id = ahd_compose_id(device,
272  vendor,
273  subdevice,
274  subvendor);
275 
276  /*
277  * Controllers, mask out the IROC/HostRAID bit
278  */
279 
280  full_id &= ID_ALL_IROC_MASK;
281 
282  for (i = 0; i < ahd_num_pci_devs; i++) {
283  entry = &ahd_pci_ident_table[i];
284  if (entry->full_id == (full_id & entry->id_mask)) {
285  /* Honor exclusion entries. */
286  if (entry->name == NULL)
287  return (NULL);
288  return (entry);
289  }
290  }
291  return (NULL);
292 }
293 
294 int
295 ahd_pci_config(struct ahd_softc *ahd, const struct ahd_pci_identity *entry)
296 {
297  struct scb_data *shared_scb_data;
298  u_int command;
299  uint32_t devconfig;
301  int error;
302 
303  shared_scb_data = NULL;
304  ahd->description = entry->name;
305  /*
306  * Record if this is an HP board.
307  */
308  subvendor = ahd_pci_read_config(ahd->dev_softc,
309  PCIR_SUBVEND_0, /*bytes*/2);
310  if (subvendor == SUBID_HP)
311  ahd->flags |= AHD_HP_BOARD;
312 
313  error = entry->setup(ahd);
314  if (error != 0)
315  return (error);
316 
317  devconfig = ahd_pci_read_config(ahd->dev_softc, DEVCONFIG, /*bytes*/4);
318  if ((devconfig & PCIXINITPAT) == PCIXINIT_PCI33_66) {
319  ahd->chip |= AHD_PCI;
320  /* Disable PCIX workarounds when running in PCI mode. */
321  ahd->bugs &= ~AHD_PCIX_BUG_MASK;
322  } else {
323  ahd->chip |= AHD_PCIX;
324  }
325  ahd->bus_description = pci_bus_modes[PCI_BUS_MODES_INDEX(devconfig)];
326 
328 
329  error = ahd_pci_map_registers(ahd);
330  if (error != 0)
331  return (error);
332 
333  /*
334  * If we need to support high memory, enable dual
335  * address cycles. This bit must be set to enable
336  * high address bit generation even if we are on a
337  * 64bit bus (PCI64BIT set in devconfig).
338  */
339  if ((ahd->flags & (AHD_39BIT_ADDRESSING|AHD_64BIT_ADDRESSING)) != 0) {
340  if (bootverbose)
341  printk("%s: Enabling 39Bit Addressing\n",
342  ahd_name(ahd));
343  devconfig = ahd_pci_read_config(ahd->dev_softc,
344  DEVCONFIG, /*bytes*/4);
345  devconfig |= DACEN;
347  devconfig, /*bytes*/4);
348  }
349 
350  /* Ensure busmastering is enabled */
351  command = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
352  command |= PCIM_CMD_BUSMASTEREN;
353  ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND, command, /*bytes*/2);
354 
355  error = ahd_softc_init(ahd);
356  if (error != 0)
357  return (error);
358 
359  ahd->bus_intr = ahd_pci_intr;
360 
361  error = ahd_reset(ahd, /*reinit*/FALSE);
362  if (error != 0)
363  return (ENXIO);
364 
365  ahd->pci_cachesize =
367  /*bytes*/1) & CACHESIZE;
368  ahd->pci_cachesize *= 4;
369 
371  /* See if we have a SEEPROM and perform auto-term */
372  error = ahd_check_extport(ahd);
373  if (error != 0)
374  return (error);
375 
376  /* Core initialization */
377  error = ahd_init(ahd);
378  if (error != 0)
379  return (error);
380  ahd->init_level++;
381 
382  /*
383  * Allow interrupts now that we are completely setup.
384  */
385  return ahd_pci_map_int(ahd);
386 }
387 
388 #ifdef CONFIG_PM
389 void
390 ahd_pci_suspend(struct ahd_softc *ahd)
391 {
392  /*
393  * Save chip register configuration data for chip resets
394  * that occur during runtime and resume events.
395  */
396  ahd->suspend_state.pci_state.devconfig =
397  ahd_pci_read_config(ahd->dev_softc, DEVCONFIG, /*bytes*/4);
398  ahd->suspend_state.pci_state.command =
399  ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/1);
400  ahd->suspend_state.pci_state.csize_lattime =
401  ahd_pci_read_config(ahd->dev_softc, CSIZE_LATTIME, /*bytes*/1);
402 
403 }
404 
405 void
406 ahd_pci_resume(struct ahd_softc *ahd)
407 {
409  ahd->suspend_state.pci_state.devconfig, /*bytes*/4);
411  ahd->suspend_state.pci_state.command, /*bytes*/1);
413  ahd->suspend_state.pci_state.csize_lattime, /*bytes*/1);
414 }
415 #endif
416 
417 /*
418  * Perform some simple tests that should catch situations where
419  * our registers are invalidly mapped.
420  */
421 int
423 {
424  uint32_t cmd;
425  u_int targpcistat;
426  u_int pci_status1;
427  int error;
428  uint8_t hcntrl;
429 
430  error = EIO;
431 
432  /*
433  * Enable PCI error interrupt status, but suppress NMIs
434  * generated by SERR raised due to target aborts.
435  */
436  cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
438  cmd & ~PCIM_CMD_SERRESPEN, /*bytes*/2);
439 
440  /*
441  * First a simple test to see if any
442  * registers can be read. Reading
443  * HCNTRL has no side effects and has
444  * at least one bit that is guaranteed to
445  * be zero so it is a good register to
446  * use for this test.
447  */
448  hcntrl = ahd_inb(ahd, HCNTRL);
449  if (hcntrl == 0xFF)
450  goto fail;
451 
452  /*
453  * Next create a situation where write combining
454  * or read prefetching could be initiated by the
455  * CPU or host bridge. Our device does not support
456  * either, so look for data corruption and/or flaged
457  * PCI errors. First pause without causing another
458  * chip reset.
459  */
460  hcntrl &= ~CHIPRST;
461  ahd_outb(ahd, HCNTRL, hcntrl|PAUSE);
462  while (ahd_is_paused(ahd) == 0)
463  ;
464 
465  /* Clear any PCI errors that occurred before our driver attached. */
467  targpcistat = ahd_inb(ahd, TARGPCISTAT);
468  ahd_outb(ahd, TARGPCISTAT, targpcistat);
469  pci_status1 = ahd_pci_read_config(ahd->dev_softc,
470  PCIR_STATUS + 1, /*bytes*/1);
472  pci_status1, /*bytes*/1);
474  ahd_outb(ahd, CLRINT, CLRPCIINT);
475 
476  ahd_outb(ahd, SEQCTL0, PERRORDIS);
477  ahd_outl(ahd, SRAM_BASE, 0x5aa555aa);
478  if (ahd_inl(ahd, SRAM_BASE) != 0x5aa555aa)
479  goto fail;
480 
481  if ((ahd_inb(ahd, INTSTAT) & PCIINT) != 0) {
483  targpcistat = ahd_inb(ahd, TARGPCISTAT);
484  if ((targpcistat & STA) != 0)
485  goto fail;
486  }
487 
488  error = 0;
489 
490 fail:
491  if ((ahd_inb(ahd, INTSTAT) & PCIINT) != 0) {
492 
494  targpcistat = ahd_inb(ahd, TARGPCISTAT);
495 
496  /* Silently clear any latched errors. */
497  ahd_outb(ahd, TARGPCISTAT, targpcistat);
498  pci_status1 = ahd_pci_read_config(ahd->dev_softc,
499  PCIR_STATUS + 1, /*bytes*/1);
501  pci_status1, /*bytes*/1);
502  ahd_outb(ahd, CLRINT, CLRPCIINT);
503  }
504  ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS);
505  ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND, cmd, /*bytes*/2);
506  return (error);
507 }
508 
509 /*
510  * Check the external port logic for a serial eeprom
511  * and termination/cable detection contrls.
512  */
513 static int
514 ahd_check_extport(struct ahd_softc *ahd)
515 {
516  struct vpd_config vpd;
517  struct seeprom_config *sc;
519  int have_seeprom;
520  int error;
521 
522  sc = ahd->seep_config;
523  have_seeprom = ahd_acquire_seeprom(ahd);
524  if (have_seeprom) {
526 
527  /*
528  * Fetch VPD for this function and parse it.
529  */
530  if (bootverbose)
531  printk("%s: Reading VPD from SEEPROM...",
532  ahd_name(ahd));
533 
534  /* Address is always in units of 16bit words */
535  start_addr = ((2 * sizeof(*sc))
536  + (sizeof(vpd) * (ahd->channel - 'A'))) / 2;
537 
538  error = ahd_read_seeprom(ahd, (uint16_t *)&vpd,
539  start_addr, sizeof(vpd)/2,
540  /*bytestream*/TRUE);
541  if (error == 0)
542  error = ahd_parse_vpddata(ahd, &vpd);
543  if (bootverbose)
544  printk("%s: VPD parsing %s\n",
545  ahd_name(ahd),
546  error == 0 ? "successful" : "failed");
547 
548  if (bootverbose)
549  printk("%s: Reading SEEPROM...", ahd_name(ahd));
550 
551  /* Address is always in units of 16bit words */
552  start_addr = (sizeof(*sc) / 2) * (ahd->channel - 'A');
553 
554  error = ahd_read_seeprom(ahd, (uint16_t *)sc,
555  start_addr, sizeof(*sc)/2,
556  /*bytestream*/FALSE);
557 
558  if (error != 0) {
559  printk("Unable to read SEEPROM\n");
560  have_seeprom = 0;
561  } else {
562  have_seeprom = ahd_verify_cksum(sc);
563 
564  if (bootverbose) {
565  if (have_seeprom == 0)
566  printk ("checksum error\n");
567  else
568  printk ("done.\n");
569  }
570  }
571  ahd_release_seeprom(ahd);
572  }
573 
574  if (!have_seeprom) {
575  u_int nvram_scb;
576 
577  /*
578  * Pull scratch ram settings and treat them as
579  * if they are the contents of an seeprom if
580  * the 'ADPT', 'BIOS', or 'ASPI' signature is found
581  * in SCB 0xFF. We manually compose the data as 16bit
582  * values to avoid endian issues.
583  */
584  ahd_set_scbptr(ahd, 0xFF);
585  nvram_scb = ahd_inb_scbram(ahd, SCB_BASE + NVRAM_SCB_OFFSET);
586  if (nvram_scb != 0xFF
587  && ((ahd_inb_scbram(ahd, SCB_BASE + 0) == 'A'
588  && ahd_inb_scbram(ahd, SCB_BASE + 1) == 'D'
589  && ahd_inb_scbram(ahd, SCB_BASE + 2) == 'P'
590  && ahd_inb_scbram(ahd, SCB_BASE + 3) == 'T')
591  || (ahd_inb_scbram(ahd, SCB_BASE + 0) == 'B'
592  && ahd_inb_scbram(ahd, SCB_BASE + 1) == 'I'
593  && ahd_inb_scbram(ahd, SCB_BASE + 2) == 'O'
594  && ahd_inb_scbram(ahd, SCB_BASE + 3) == 'S')
595  || (ahd_inb_scbram(ahd, SCB_BASE + 0) == 'A'
596  && ahd_inb_scbram(ahd, SCB_BASE + 1) == 'S'
597  && ahd_inb_scbram(ahd, SCB_BASE + 2) == 'P'
598  && ahd_inb_scbram(ahd, SCB_BASE + 3) == 'I'))) {
599  uint16_t *sc_data;
600  int i;
601 
602  ahd_set_scbptr(ahd, nvram_scb);
603  sc_data = (uint16_t *)sc;
604  for (i = 0; i < 64; i += 2)
605  *sc_data++ = ahd_inw_scbram(ahd, SCB_BASE+i);
606  have_seeprom = ahd_verify_cksum(sc);
607  if (have_seeprom)
608  ahd->flags |= AHD_SCB_CONFIG_USED;
609  }
610  }
611 
612 #ifdef AHD_DEBUG
613  if (have_seeprom != 0
614  && (ahd_debug & AHD_DUMP_SEEPROM) != 0) {
615  uint16_t *sc_data;
616  int i;
617 
618  printk("%s: Seeprom Contents:", ahd_name(ahd));
619  sc_data = (uint16_t *)sc;
620  for (i = 0; i < (sizeof(*sc)); i += 2)
621  printk("\n\t0x%.4x", sc_data[i]);
622  printk("\n");
623  }
624 #endif
625 
626  if (!have_seeprom) {
627  if (bootverbose)
628  printk("%s: No SEEPROM available.\n", ahd_name(ahd));
629  ahd->flags |= AHD_USEDEFAULTS;
630  error = ahd_default_config(ahd);
631  adapter_control = CFAUTOTERM|CFSEAUTOTERM;
632  kfree(ahd->seep_config);
633  ahd->seep_config = NULL;
634  } else {
635  error = ahd_parse_cfgdata(ahd, sc);
636  adapter_control = sc->adapter_control;
637  }
638  if (error != 0)
639  return (error);
640 
641  ahd_configure_termination(ahd, adapter_control);
642 
643  return (0);
644 }
645 
646 static void
647 ahd_configure_termination(struct ahd_softc *ahd, u_int adapter_control)
648 {
649  int error;
650  u_int sxfrctl1;
651  uint8_t termctl;
652  uint32_t devconfig;
653 
654  devconfig = ahd_pci_read_config(ahd->dev_softc, DEVCONFIG, /*bytes*/4);
655  devconfig &= ~STPWLEVEL;
656  if ((ahd->flags & AHD_STPWLEVEL_A) != 0)
657  devconfig |= STPWLEVEL;
658  if (bootverbose)
659  printk("%s: STPWLEVEL is %s\n",
660  ahd_name(ahd), (devconfig & STPWLEVEL) ? "on" : "off");
661  ahd_pci_write_config(ahd->dev_softc, DEVCONFIG, devconfig, /*bytes*/4);
662 
663  /* Make sure current sensing is off. */
664  if ((ahd->flags & AHD_CURRENT_SENSING) != 0) {
666  }
667 
668  /*
669  * Read to sense. Write to set.
670  */
671  error = ahd_read_flexport(ahd, FLXADDR_TERMCTL, &termctl);
672  if ((adapter_control & CFAUTOTERM) == 0) {
673  if (bootverbose)
674  printk("%s: Manual Primary Termination\n",
675  ahd_name(ahd));
677  if ((adapter_control & CFSTERM) != 0)
678  termctl |= FLX_TERMCTL_ENPRILOW;
679  if ((adapter_control & CFWSTERM) != 0)
680  termctl |= FLX_TERMCTL_ENPRIHIGH;
681  } else if (error != 0) {
682  printk("%s: Primary Auto-Term Sensing failed! "
683  "Using Defaults.\n", ahd_name(ahd));
685  }
686 
687  if ((adapter_control & CFSEAUTOTERM) == 0) {
688  if (bootverbose)
689  printk("%s: Manual Secondary Termination\n",
690  ahd_name(ahd));
692  if ((adapter_control & CFSELOWTERM) != 0)
693  termctl |= FLX_TERMCTL_ENSECLOW;
694  if ((adapter_control & CFSEHIGHTERM) != 0)
695  termctl |= FLX_TERMCTL_ENSECHIGH;
696  } else if (error != 0) {
697  printk("%s: Secondary Auto-Term Sensing failed! "
698  "Using Defaults.\n", ahd_name(ahd));
700  }
701 
702  /*
703  * Now set the termination based on what we found.
704  */
705  sxfrctl1 = ahd_inb(ahd, SXFRCTL1) & ~STPWEN;
706  ahd->flags &= ~AHD_TERM_ENB_A;
707  if ((termctl & FLX_TERMCTL_ENPRILOW) != 0) {
708  ahd->flags |= AHD_TERM_ENB_A;
709  sxfrctl1 |= STPWEN;
710  }
711  /* Must set the latch once in order to be effective. */
712  ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
713  ahd_outb(ahd, SXFRCTL1, sxfrctl1);
714 
715  error = ahd_write_flexport(ahd, FLXADDR_TERMCTL, termctl);
716  if (error != 0) {
717  printk("%s: Unable to set termination settings!\n",
718  ahd_name(ahd));
719  } else if (bootverbose) {
720  printk("%s: Primary High byte termination %sabled\n",
721  ahd_name(ahd),
722  (termctl & FLX_TERMCTL_ENPRIHIGH) ? "En" : "Dis");
723 
724  printk("%s: Primary Low byte termination %sabled\n",
725  ahd_name(ahd),
726  (termctl & FLX_TERMCTL_ENPRILOW) ? "En" : "Dis");
727 
728  printk("%s: Secondary High byte termination %sabled\n",
729  ahd_name(ahd),
730  (termctl & FLX_TERMCTL_ENSECHIGH) ? "En" : "Dis");
731 
732  printk("%s: Secondary Low byte termination %sabled\n",
733  ahd_name(ahd),
734  (termctl & FLX_TERMCTL_ENSECLOW) ? "En" : "Dis");
735  }
736  return;
737 }
738 
739 #define DPE 0x80
740 #define SSE 0x40
741 #define RMA 0x20
742 #define RTA 0x10
743 #define STA 0x08
744 #define DPR 0x01
745 
746 static const char *split_status_source[] =
747 {
748  "DFF0",
749  "DFF1",
750  "OVLY",
751  "CMC",
752 };
753 
754 static const char *pci_status_source[] =
755 {
756  "DFF0",
757  "DFF1",
758  "SG",
759  "CMC",
760  "OVLY",
761  "NONE",
762  "MSI",
763  "TARG"
764 };
765 
766 static const char *split_status_strings[] =
767 {
768  "%s: Received split response in %s.\n",
769  "%s: Received split completion error message in %s\n",
770  "%s: Receive overrun in %s\n",
771  "%s: Count not complete in %s\n",
772  "%s: Split completion data bucket in %s\n",
773  "%s: Split completion address error in %s\n",
774  "%s: Split completion byte count error in %s\n",
775  "%s: Signaled Target-abort to early terminate a split in %s\n"
776 };
777 
778 static const char *pci_status_strings[] =
779 {
780  "%s: Data Parity Error has been reported via PERR# in %s\n",
781  "%s: Target initial wait state error in %s\n",
782  "%s: Split completion read data parity error in %s\n",
783  "%s: Split completion address attribute parity error in %s\n",
784  "%s: Received a Target Abort in %s\n",
785  "%s: Received a Master Abort in %s\n",
786  "%s: Signal System Error Detected in %s\n",
787  "%s: Address or Write Phase Parity Error Detected in %s.\n"
788 };
789 
790 static void
791 ahd_pci_intr(struct ahd_softc *ahd)
792 {
793  uint8_t pci_status[8];
794  ahd_mode_state saved_modes;
795  u_int pci_status1;
796  u_int intstat;
797  u_int i;
798  u_int reg;
799 
800  intstat = ahd_inb(ahd, INTSTAT);
801 
802  if ((intstat & SPLTINT) != 0)
803  ahd_pci_split_intr(ahd, intstat);
804 
805  if ((intstat & PCIINT) == 0)
806  return;
807 
808  printk("%s: PCI error Interrupt\n", ahd_name(ahd));
809  saved_modes = ahd_save_modes(ahd);
810  ahd_dump_card_state(ahd);
812  for (i = 0, reg = DF0PCISTAT; i < 8; i++, reg++) {
813 
814  if (i == 5)
815  continue;
816  pci_status[i] = ahd_inb(ahd, reg);
817  /* Clear latched errors. So our interrupt deasserts. */
818  ahd_outb(ahd, reg, pci_status[i]);
819  }
820 
821  for (i = 0; i < 8; i++) {
822  u_int bit;
823 
824  if (i == 5)
825  continue;
826 
827  for (bit = 0; bit < 8; bit++) {
828 
829  if ((pci_status[i] & (0x1 << bit)) != 0) {
830  static const char *s;
831 
832  s = pci_status_strings[bit];
833  if (i == 7/*TARG*/ && bit == 3)
834  s = "%s: Signaled Target Abort\n";
835  printk(s, ahd_name(ahd), pci_status_source[i]);
836  }
837  }
838  }
839  pci_status1 = ahd_pci_read_config(ahd->dev_softc,
840  PCIR_STATUS + 1, /*bytes*/1);
842  pci_status1, /*bytes*/1);
843  ahd_restore_modes(ahd, saved_modes);
844  ahd_outb(ahd, CLRINT, CLRPCIINT);
845  ahd_unpause(ahd);
846 }
847 
848 static void
849 ahd_pci_split_intr(struct ahd_softc *ahd, u_int intstat)
850 {
851  uint8_t split_status[4];
852  uint8_t split_status1[4];
853  uint8_t sg_split_status[2];
854  uint8_t sg_split_status1[2];
855  ahd_mode_state saved_modes;
856  u_int i;
857  uint16_t pcix_status;
858 
859  /*
860  * Check for splits in all modes. Modes 0 and 1
861  * additionally have SG engine splits to look at.
862  */
863  pcix_status = ahd_pci_read_config(ahd->dev_softc, PCIXR_STATUS,
864  /*bytes*/2);
865  printk("%s: PCI Split Interrupt - PCI-X status = 0x%x\n",
866  ahd_name(ahd), pcix_status);
867  saved_modes = ahd_save_modes(ahd);
868  for (i = 0; i < 4; i++) {
869  ahd_set_modes(ahd, i, i);
870 
871  split_status[i] = ahd_inb(ahd, DCHSPLTSTAT0);
872  split_status1[i] = ahd_inb(ahd, DCHSPLTSTAT1);
873  /* Clear latched errors. So our interrupt deasserts. */
874  ahd_outb(ahd, DCHSPLTSTAT0, split_status[i]);
875  ahd_outb(ahd, DCHSPLTSTAT1, split_status1[i]);
876  if (i > 1)
877  continue;
878  sg_split_status[i] = ahd_inb(ahd, SGSPLTSTAT0);
879  sg_split_status1[i] = ahd_inb(ahd, SGSPLTSTAT1);
880  /* Clear latched errors. So our interrupt deasserts. */
881  ahd_outb(ahd, SGSPLTSTAT0, sg_split_status[i]);
882  ahd_outb(ahd, SGSPLTSTAT1, sg_split_status1[i]);
883  }
884 
885  for (i = 0; i < 4; i++) {
886  u_int bit;
887 
888  for (bit = 0; bit < 8; bit++) {
889 
890  if ((split_status[i] & (0x1 << bit)) != 0) {
891  static const char *s;
892 
893  s = split_status_strings[bit];
894  printk(s, ahd_name(ahd),
895  split_status_source[i]);
896  }
897 
898  if (i > 1)
899  continue;
900 
901  if ((sg_split_status[i] & (0x1 << bit)) != 0) {
902  static const char *s;
903 
904  s = split_status_strings[bit];
905  printk(s, ahd_name(ahd), "SG");
906  }
907  }
908  }
909  /*
910  * Clear PCI-X status bits.
911  */
913  pcix_status, /*bytes*/2);
914  ahd_outb(ahd, CLRINT, CLRSPLTINT);
915  ahd_restore_modes(ahd, saved_modes);
916 }
917 
918 static int
919 ahd_aic7901_setup(struct ahd_softc *ahd)
920 {
921 
922  ahd->chip = AHD_AIC7901;
923  ahd->features = AHD_AIC7901_FE;
924  return (ahd_aic790X_setup(ahd));
925 }
926 
927 static int
928 ahd_aic7901A_setup(struct ahd_softc *ahd)
929 {
930 
931  ahd->chip = AHD_AIC7901A;
932  ahd->features = AHD_AIC7901A_FE;
933  return (ahd_aic790X_setup(ahd));
934 }
935 
936 static int
937 ahd_aic7902_setup(struct ahd_softc *ahd)
938 {
939  ahd->chip = AHD_AIC7902;
940  ahd->features = AHD_AIC7902_FE;
941  return (ahd_aic790X_setup(ahd));
942 }
943 
944 static int
945 ahd_aic790X_setup(struct ahd_softc *ahd)
946 {
948  u_int rev;
949 
950  pci = ahd->dev_softc;
951  rev = ahd_pci_read_config(pci, PCIR_REVID, /*bytes*/1);
952  if (rev < ID_AIC7902_PCI_REV_A4) {
953  printk("%s: Unable to attach to unsupported chip revision %d\n",
954  ahd_name(ahd), rev);
955  ahd_pci_write_config(pci, PCIR_COMMAND, 0, /*bytes*/2);
956  return (ENXIO);
957  }
958  ahd->channel = ahd_get_pci_function(pci) + 'A';
959  if (rev < ID_AIC7902_PCI_REV_B0) {
960  /*
961  * Enable A series workarounds.
962  */
974 
975  /*
976  * IO Cell parameter setup.
977  */
978  AHD_SET_PRECOMP(ahd, AHD_PRECOMP_CUTBACK_29);
979 
980  if ((ahd->flags & AHD_HP_BOARD) == 0)
981  AHD_SET_SLEWRATE(ahd, AHD_SLEWRATE_DEF_REVA);
982  } else {
983  /* This is revision B and newer. */
984  extern uint32_t aic79xx_slowcrc;
985  u_int devconfig1;
986 
991 
992  /* If the user requested that the SLOWCRC bit to be set. */
993  if (aic79xx_slowcrc)
995 
996  /*
997  * Some issues have been resolved in the 7901B.
998  */
999  if ((ahd->features & AHD_MULTI_FUNC) != 0)
1001 
1002  /*
1003  * IO Cell parameter setup.
1004  */
1005  AHD_SET_PRECOMP(ahd, AHD_PRECOMP_CUTBACK_29);
1006  AHD_SET_SLEWRATE(ahd, AHD_SLEWRATE_DEF_REVB);
1007  AHD_SET_AMPLITUDE(ahd, AHD_AMPLITUDE_DEF);
1008 
1009  /*
1010  * Set the PREQDIS bit for H2B which disables some workaround
1011  * that doesn't work on regular PCI busses.
1012  * XXX - Find out exactly what this does from the hardware
1013  * folks!
1014  */
1015  devconfig1 = ahd_pci_read_config(pci, DEVCONFIG1, /*bytes*/1);
1017  devconfig1|PREQDIS, /*bytes*/1);
1018  devconfig1 = ahd_pci_read_config(pci, DEVCONFIG1, /*bytes*/1);
1019  }
1020 
1021  return (0);
1022 }