Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
time.c
Go to the documentation of this file.
1 /*
2  * linux/arch/alpha/kernel/time.c
3  *
4  * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
5  *
6  * This file contains the PC-specific time handling details:
7  * reading the RTC at bootup, etc..
8  * 1994-07-02 Alan Modra
9  * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1995-03-26 Markus Kuhn
11  * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12  * precision CMOS clock update
13  * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
14  * "A Kernel Model for Precision Timekeeping" by Dave Mills
15  * 1997-01-09 Adrian Sun
16  * use interval timer if CONFIG_RTC=y
17  * 1997-10-29 John Bowman ([email protected])
18  * fixed tick loss calculation in timer_interrupt
19  * (round system clock to nearest tick instead of truncating)
20  * fixed algorithm in time_init for getting time from CMOS clock
21  * 1999-04-16 Thorsten Kranzkowski ([email protected])
22  * fixed algorithm in do_gettimeofday() for calculating the precise time
23  * from processor cycle counter (now taking lost_ticks into account)
24  * 2000-08-13 Jan-Benedict Glaw <[email protected]>
25  * Fixed time_init to be aware of epoches != 1900. This prevents
26  * booting up in 2048 for me;) Code is stolen from rtc.c.
27  * 2003-06-03 R. Scott Bailey <[email protected]>
28  * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29  */
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
44 #include <linux/irq_work.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <asm/hwrpb.h>
49 #include <asm/rtc.h>
50 
51 #include <linux/mc146818rtc.h>
52 #include <linux/time.h>
53 #include <linux/timex.h>
54 #include <linux/clocksource.h>
55 
56 #include "proto.h"
57 #include "irq_impl.h"
58 
59 static int set_rtc_mmss(unsigned long);
60 
61 DEFINE_SPINLOCK(rtc_lock);
62 EXPORT_SYMBOL(rtc_lock);
63 
64 #define TICK_SIZE (tick_nsec / 1000)
65 
66 /*
67  * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
68  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
69  * for large CPU clock rates.
70  */
71 #define FIX_SHIFT 48
72 
73 /* lump static variables together for more efficient access: */
74 static struct {
75  /* cycle counter last time it got invoked */
77  /* ticks/cycle * 2^48 */
78  unsigned long scaled_ticks_per_cycle;
79  /* partial unused tick */
80  unsigned long partial_tick;
81 } state;
82 
83 unsigned long est_cycle_freq;
84 
85 #ifdef CONFIG_IRQ_WORK
86 
87 DEFINE_PER_CPU(u8, irq_work_pending);
88 
89 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
90 #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
91 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
92 
93 void arch_irq_work_raise(void)
94 {
95  set_irq_work_pending_flag();
96 }
97 
98 #else /* CONFIG_IRQ_WORK */
99 
100 #define test_irq_work_pending() 0
101 #define clear_irq_work_pending()
102 
103 #endif /* CONFIG_IRQ_WORK */
104 
105 
106 static inline __u32 rpcc(void)
107 {
108  __u32 result;
109  asm volatile ("rpcc %0" : "=r"(result));
110  return result;
111 }
112 
114 {
115  return set_rtc_mmss(now.tv_sec);
116 }
117 
119 {
120  unsigned int year, mon, day, hour, min, sec, epoch;
121 
122  sec = CMOS_READ(RTC_SECONDS);
123  min = CMOS_READ(RTC_MINUTES);
124  hour = CMOS_READ(RTC_HOURS);
126  mon = CMOS_READ(RTC_MONTH);
127  year = CMOS_READ(RTC_YEAR);
128 
130  sec = bcd2bin(sec);
131  min = bcd2bin(min);
132  hour = bcd2bin(hour);
133  day = bcd2bin(day);
134  mon = bcd2bin(mon);
135  year = bcd2bin(year);
136  }
137 
138  /* PC-like is standard; used for year >= 70 */
139  epoch = 1900;
140  if (year < 20)
141  epoch = 2000;
142  else if (year >= 20 && year < 48)
143  /* NT epoch */
144  epoch = 1980;
145  else if (year >= 48 && year < 70)
146  /* Digital UNIX epoch */
147  epoch = 1952;
148 
149  printk(KERN_INFO "Using epoch = %d\n", epoch);
150 
151  if ((year += epoch) < 1970)
152  year += 100;
153 
154  ts->tv_sec = mktime(year, mon, day, hour, min, sec);
155  ts->tv_nsec = 0;
156 }
157 
158 
159 
160 /*
161  * timer_interrupt() needs to keep up the real-time clock,
162  * as well as call the "xtime_update()" routine every clocktick
163  */
165 {
166  unsigned long delta;
167  __u32 now;
168  long nticks;
169 
170 #ifndef CONFIG_SMP
171  /* Not SMP, do kernel PC profiling here. */
173 #endif
174 
175  /*
176  * Calculate how many ticks have passed since the last update,
177  * including any previous partial leftover. Save any resulting
178  * fraction for the next pass.
179  */
180  now = rpcc();
181  delta = now - state.last_time;
182  state.last_time = now;
183  delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
184  state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
185  nticks = delta >> FIX_SHIFT;
186 
187  if (nticks)
188  xtime_update(nticks);
189 
190  if (test_irq_work_pending()) {
192  irq_work_run();
193  }
194 
195 #ifndef CONFIG_SMP
196  while (nticks--)
198 #endif
199 
200  return IRQ_HANDLED;
201 }
202 
203 void __init
205 {
206  unsigned char x;
207 
208  /* Reset periodic interrupt frequency. */
209  x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
210  /* Test includes known working values on various platforms
211  where 0x26 is wrong; we refuse to change those. */
212  if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
213  printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
215  }
216 
217  /* Turn on periodic interrupts. */
218  x = CMOS_READ(RTC_CONTROL);
219  if (!(x & RTC_PIE)) {
220  printk("Turning on RTC interrupts.\n");
221  x |= RTC_PIE;
222  x &= ~(RTC_AIE | RTC_UIE);
224  }
226 
227  outb(0x36, 0x43); /* pit counter 0: system timer */
228  outb(0x00, 0x40);
229  outb(0x00, 0x40);
230 
231  outb(0xb6, 0x43); /* pit counter 2: speaker */
232  outb(0x31, 0x42);
233  outb(0x13, 0x42);
234 
235  init_rtc_irq();
236 }
237 
238 unsigned int common_get_rtc_time(struct rtc_time *time)
239 {
240  return __get_rtc_time(time);
241 }
242 
244 {
245  return __set_rtc_time(time);
246 }
247 
248 /* Validate a computed cycle counter result against the known bounds for
249  the given processor core. There's too much brokenness in the way of
250  timing hardware for any one method to work everywhere. :-(
251 
252  Return 0 if the result cannot be trusted, otherwise return the argument. */
253 
254 static unsigned long __init
255 validate_cc_value(unsigned long cc)
256 {
257  static struct bounds {
258  unsigned int min, max;
259  } cpu_hz[] __initdata = {
260  [EV3_CPU] = { 50000000, 200000000 }, /* guess */
261  [EV4_CPU] = { 100000000, 300000000 },
262  [LCA4_CPU] = { 100000000, 300000000 }, /* guess */
263  [EV45_CPU] = { 200000000, 300000000 },
264  [EV5_CPU] = { 250000000, 433000000 },
265  [EV56_CPU] = { 333000000, 667000000 },
266  [PCA56_CPU] = { 400000000, 600000000 }, /* guess */
267  [PCA57_CPU] = { 500000000, 600000000 }, /* guess */
268  [EV6_CPU] = { 466000000, 600000000 },
269  [EV67_CPU] = { 600000000, 750000000 },
270  [EV68AL_CPU] = { 750000000, 940000000 },
271  [EV68CB_CPU] = { 1000000000, 1333333333 },
272  /* None of the following are shipping as of 2001-11-01. */
273  [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
274  [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
275  [EV7_CPU] = { 800000000, 1400000000 }, /* guess */
276  [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
277  };
278 
279  /* Allow for some drift in the crystal. 10MHz is more than enough. */
280  const unsigned int deviation = 10000000;
281 
282  struct percpu_struct *cpu;
283  unsigned int index;
284 
285  cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
286  index = cpu->type & 0xffffffff;
287 
288  /* If index out of bounds, no way to validate. */
289  if (index >= ARRAY_SIZE(cpu_hz))
290  return cc;
291 
292  /* If index contains no data, no way to validate. */
293  if (cpu_hz[index].max == 0)
294  return cc;
295 
296  if (cc < cpu_hz[index].min - deviation
297  || cc > cpu_hz[index].max + deviation)
298  return 0;
299 
300  return cc;
301 }
302 
303 
304 /*
305  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
306  * arch/i386/time.c.
307  */
308 
309 #define CALIBRATE_LATCH 0xffff
310 #define TIMEOUT_COUNT 0x100000
311 
312 static unsigned long __init
313 calibrate_cc_with_pit(void)
314 {
315  int cc, count = 0;
316 
317  /* Set the Gate high, disable speaker */
318  outb((inb(0x61) & ~0x02) | 0x01, 0x61);
319 
320  /*
321  * Now let's take care of CTC channel 2
322  *
323  * Set the Gate high, program CTC channel 2 for mode 0,
324  * (interrupt on terminal count mode), binary count,
325  * load 5 * LATCH count, (LSB and MSB) to begin countdown.
326  */
327  outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
328  outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
329  outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
330 
331  cc = rpcc();
332  do {
333  count++;
334  } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
335  cc = rpcc() - cc;
336 
337  /* Error: ECTCNEVERSET or ECPUTOOFAST. */
338  if (count <= 1 || count == TIMEOUT_COUNT)
339  return 0;
340 
341  return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
342 }
343 
344 /* The Linux interpretation of the CMOS clock register contents:
345  When the Update-In-Progress (UIP) flag goes from 1 to 0, the
346  RTC registers show the second which has precisely just started.
347  Let's hope other operating systems interpret the RTC the same way. */
348 
349 static unsigned long __init
350 rpcc_after_update_in_progress(void)
351 {
352  do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
353  do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
354 
355  return rpcc();
356 }
357 
358 #ifndef CONFIG_SMP
359 /* Until and unless we figure out how to get cpu cycle counters
360  in sync and keep them there, we can't use the rpcc. */
361 static cycle_t read_rpcc(struct clocksource *cs)
362 {
363  cycle_t ret = (cycle_t)rpcc();
364  return ret;
365 }
366 
367 static struct clocksource clocksource_rpcc = {
368  .name = "rpcc",
369  .rating = 300,
370  .read = read_rpcc,
371  .mask = CLOCKSOURCE_MASK(32),
373 };
374 
375 static inline void register_rpcc_clocksource(long cycle_freq)
376 {
377  clocksource_register_hz(&clocksource_rpcc, cycle_freq);
378 }
379 #else /* !CONFIG_SMP */
380 static inline void register_rpcc_clocksource(long cycle_freq)
381 {
382 }
383 #endif /* !CONFIG_SMP */
384 
385 void __init
387 {
388  unsigned int cc1, cc2;
389  unsigned long cycle_freq, tolerance;
390  long diff;
391 
392  /* Calibrate CPU clock -- attempt #1. */
393  if (!est_cycle_freq)
394  est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
395 
396  cc1 = rpcc();
397 
398  /* Calibrate CPU clock -- attempt #2. */
399  if (!est_cycle_freq) {
400  cc1 = rpcc_after_update_in_progress();
401  cc2 = rpcc_after_update_in_progress();
402  est_cycle_freq = validate_cc_value(cc2 - cc1);
403  cc1 = cc2;
404  }
405 
406  cycle_freq = hwrpb->cycle_freq;
407  if (est_cycle_freq) {
408  /* If the given value is within 250 PPM of what we calculated,
409  accept it. Otherwise, use what we found. */
410  tolerance = cycle_freq / 4000;
411  diff = cycle_freq - est_cycle_freq;
412  if (diff < 0)
413  diff = -diff;
414  if ((unsigned long)diff > tolerance) {
415  cycle_freq = est_cycle_freq;
416  printk("HWRPB cycle frequency bogus. "
417  "Estimated %lu Hz\n", cycle_freq);
418  } else {
419  est_cycle_freq = 0;
420  }
421  } else if (! validate_cc_value (cycle_freq)) {
422  printk("HWRPB cycle frequency bogus, "
423  "and unable to estimate a proper value!\n");
424  }
425 
426  /* From John Bowman <[email protected]>: allow the values
427  to settle, as the Update-In-Progress bit going low isn't good
428  enough on some hardware. 2ms is our guess; we haven't found
429  bogomips yet, but this is close on a 500Mhz box. */
430  __delay(1000000);
431 
432 
433  if (HZ > (1<<16)) {
434  extern void __you_loose (void);
435  __you_loose();
436  }
437 
438  register_rpcc_clocksource(cycle_freq);
439 
440  state.last_time = cc1;
441  state.scaled_ticks_per_cycle
442  = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
443  state.partial_tick = 0L;
444 
445  /* Startup the timer source. */
446  alpha_mv.init_rtc();
447 }
448 
449 /*
450  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
451  * called 500 ms after the second nowtime has started, because when
452  * nowtime is written into the registers of the CMOS clock, it will
453  * jump to the next second precisely 500 ms later. Check the Motorola
454  * MC146818A or Dallas DS12887 data sheet for details.
455  *
456  * BUG: This routine does not handle hour overflow properly; it just
457  * sets the minutes. Usually you won't notice until after reboot!
458  */
459 
460 
461 static int
462 set_rtc_mmss(unsigned long nowtime)
463 {
464  int retval = 0;
465  int real_seconds, real_minutes, cmos_minutes;
466  unsigned char save_control, save_freq_select;
467 
468  /* irq are locally disabled here */
469  spin_lock(&rtc_lock);
470  /* Tell the clock it's being set */
471  save_control = CMOS_READ(RTC_CONTROL);
472  CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
473 
474  /* Stop and reset prescaler */
475  save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
476  CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
477 
478  cmos_minutes = CMOS_READ(RTC_MINUTES);
479  if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
480  cmos_minutes = bcd2bin(cmos_minutes);
481 
482  /*
483  * since we're only adjusting minutes and seconds,
484  * don't interfere with hour overflow. This avoids
485  * messing with unknown time zones but requires your
486  * RTC not to be off by more than 15 minutes
487  */
488  real_seconds = nowtime % 60;
489  real_minutes = nowtime / 60;
490  if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
491  /* correct for half hour time zone */
492  real_minutes += 30;
493  }
494  real_minutes %= 60;
495 
496  if (abs(real_minutes - cmos_minutes) < 30) {
497  if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
498  real_seconds = bin2bcd(real_seconds);
499  real_minutes = bin2bcd(real_minutes);
500  }
501  CMOS_WRITE(real_seconds,RTC_SECONDS);
502  CMOS_WRITE(real_minutes,RTC_MINUTES);
503  } else {
505  "set_rtc_mmss: can't update from %d to %d\n",
506  cmos_minutes, real_minutes);
507  retval = -1;
508  }
509 
510  /* The following flags have to be released exactly in this order,
511  * otherwise the DS12887 (popular MC146818A clone with integrated
512  * battery and quartz) will not reset the oscillator and will not
513  * update precisely 500 ms later. You won't find this mentioned in
514  * the Dallas Semiconductor data sheets, but who believes data
515  * sheets anyway ... -- Markus Kuhn
516  */
517  CMOS_WRITE(save_control, RTC_CONTROL);
518  CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
519  spin_unlock(&rtc_lock);
520 
521  return retval;
522 }