Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kprobes.c
Go to the documentation of this file.
1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <[email protected]>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <[email protected]>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/stringify.h>
28 #include <asm/traps.h>
29 #include <asm/cacheflush.h>
30 
31 #include "kprobes.h"
32 #include "patch.h"
33 
34 #define MIN_STACK_SIZE(addr) \
35  min((unsigned long)MAX_STACK_SIZE, \
36  (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
37 
38 #define flush_insns(addr, size) \
39  flush_icache_range((unsigned long)(addr), \
40  (unsigned long)(addr) + \
41  (size))
42 
43 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
44 #define JPROBE_MAGIC_ADDR 0xffffffff
45 
46 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
48 
49 
51 {
54  unsigned long addr = (unsigned long)p->addr;
55  bool thumb;
56  kprobe_decode_insn_t *decode_insn;
57  int is;
58 
59  if (in_exception_text(addr))
60  return -EINVAL;
61 
62 #ifdef CONFIG_THUMB2_KERNEL
63  thumb = true;
64  addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
65  insn = ((u16 *)addr)[0];
66  if (is_wide_instruction(insn)) {
67  insn <<= 16;
68  insn |= ((u16 *)addr)[1];
69  decode_insn = thumb32_kprobe_decode_insn;
70  } else
71  decode_insn = thumb16_kprobe_decode_insn;
72 #else /* !CONFIG_THUMB2_KERNEL */
73  thumb = false;
74  if (addr & 0x3)
75  return -EINVAL;
76  insn = *p->addr;
77  decode_insn = arm_kprobe_decode_insn;
78 #endif
79 
80  p->opcode = insn;
81  p->ainsn.insn = tmp_insn;
82 
83  switch ((*decode_insn)(insn, &p->ainsn)) {
84  case INSN_REJECTED: /* not supported */
85  return -EINVAL;
86 
87  case INSN_GOOD: /* instruction uses slot */
88  p->ainsn.insn = get_insn_slot();
89  if (!p->ainsn.insn)
90  return -ENOMEM;
91  for (is = 0; is < MAX_INSN_SIZE; ++is)
92  p->ainsn.insn[is] = tmp_insn[is];
93  flush_insns(p->ainsn.insn,
94  sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
95  p->ainsn.insn_fn = (kprobe_insn_fn_t *)
96  ((uintptr_t)p->ainsn.insn | thumb);
97  break;
98 
99  case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
100  p->ainsn.insn = NULL;
101  break;
102  }
103 
104  return 0;
105 }
106 
108 {
109  unsigned int brkp;
110  void *addr;
111 
112  if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
113  /* Remove any Thumb flag */
114  addr = (void *)((uintptr_t)p->addr & ~1);
115 
116  if (is_wide_instruction(p->opcode))
118  else
120  } else {
122 
123  addr = p->addr;
125 
126  if (insn >= 0xe0000000)
127  brkp |= 0xe0000000; /* Unconditional instruction */
128  else
129  brkp |= insn & 0xf0000000; /* Copy condition from insn */
130  }
131 
132  patch_text(addr, brkp);
133 }
134 
135 /*
136  * The actual disarming is done here on each CPU and synchronized using
137  * stop_machine. This synchronization is necessary on SMP to avoid removing
138  * a probe between the moment the 'Undefined Instruction' exception is raised
139  * and the moment the exception handler reads the faulting instruction from
140  * memory. It is also needed to atomically set the two half-words of a 32-bit
141  * Thumb breakpoint.
142  */
144 {
145  struct kprobe *kp = p;
146  void *addr = (void *)((uintptr_t)kp->addr & ~1);
147 
148  __patch_text(addr, kp->opcode);
149 
150  return 0;
151 }
152 
154 {
155  stop_machine(__arch_disarm_kprobe, p, cpu_online_mask);
156 }
157 
159 {
160  if (p->ainsn.insn) {
161  free_insn_slot(p->ainsn.insn, 0);
162  p->ainsn.insn = NULL;
163  }
164 }
165 
166 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
167 {
168  kcb->prev_kprobe.kp = kprobe_running();
169  kcb->prev_kprobe.status = kcb->kprobe_status;
170 }
171 
172 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
173 {
174  __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
175  kcb->kprobe_status = kcb->prev_kprobe.status;
176 }
177 
178 static void __kprobes set_current_kprobe(struct kprobe *p)
179 {
180  __get_cpu_var(current_kprobe) = p;
181 }
182 
183 static void __kprobes
184 singlestep_skip(struct kprobe *p, struct pt_regs *regs)
185 {
186 #ifdef CONFIG_THUMB2_KERNEL
187  regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
188  if (is_wide_instruction(p->opcode))
189  regs->ARM_pc += 4;
190  else
191  regs->ARM_pc += 2;
192 #else
193  regs->ARM_pc += 4;
194 #endif
195 }
196 
197 static inline void __kprobes
198 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
199 {
200  p->ainsn.insn_singlestep(p, regs);
201 }
202 
203 /*
204  * Called with IRQs disabled. IRQs must remain disabled from that point
205  * all the way until processing this kprobe is complete. The current
206  * kprobes implementation cannot process more than one nested level of
207  * kprobe, and that level is reserved for user kprobe handlers, so we can't
208  * risk encountering a new kprobe in an interrupt handler.
209  */
210 void __kprobes kprobe_handler(struct pt_regs *regs)
211 {
212  struct kprobe *p, *cur;
213  struct kprobe_ctlblk *kcb;
214 
215  kcb = get_kprobe_ctlblk();
216  cur = kprobe_running();
217 
218 #ifdef CONFIG_THUMB2_KERNEL
219  /*
220  * First look for a probe which was registered using an address with
221  * bit 0 set, this is the usual situation for pointers to Thumb code.
222  * If not found, fallback to looking for one with bit 0 clear.
223  */
224  p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
225  if (!p)
226  p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
227 
228 #else /* ! CONFIG_THUMB2_KERNEL */
229  p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
230 #endif
231 
232  if (p) {
233  if (cur) {
234  /* Kprobe is pending, so we're recursing. */
235  switch (kcb->kprobe_status) {
236  case KPROBE_HIT_ACTIVE:
237  case KPROBE_HIT_SSDONE:
238  /* A pre- or post-handler probe got us here. */
240  save_previous_kprobe(kcb);
241  set_current_kprobe(p);
242  kcb->kprobe_status = KPROBE_REENTER;
243  singlestep(p, regs, kcb);
244  restore_previous_kprobe(kcb);
245  break;
246  default:
247  /* impossible cases */
248  BUG();
249  }
250  } else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
251  /* Probe hit and conditional execution check ok. */
252  set_current_kprobe(p);
254 
255  /*
256  * If we have no pre-handler or it returned 0, we
257  * continue with normal processing. If we have a
258  * pre-handler and it returned non-zero, it prepped
259  * for calling the break_handler below on re-entry,
260  * so get out doing nothing more here.
261  */
262  if (!p->pre_handler || !p->pre_handler(p, regs)) {
264  singlestep(p, regs, kcb);
265  if (p->post_handler) {
266  kcb->kprobe_status = KPROBE_HIT_SSDONE;
267  p->post_handler(p, regs, 0);
268  }
269  reset_current_kprobe();
270  }
271  } else {
272  /*
273  * Probe hit but conditional execution check failed,
274  * so just skip the instruction and continue as if
275  * nothing had happened.
276  */
277  singlestep_skip(p, regs);
278  }
279  } else if (cur) {
280  /* We probably hit a jprobe. Call its break handler. */
281  if (cur->break_handler && cur->break_handler(cur, regs)) {
283  singlestep(cur, regs, kcb);
284  if (cur->post_handler) {
285  kcb->kprobe_status = KPROBE_HIT_SSDONE;
286  cur->post_handler(cur, regs, 0);
287  }
288  }
289  reset_current_kprobe();
290  } else {
291  /*
292  * The probe was removed and a race is in progress.
293  * There is nothing we can do about it. Let's restart
294  * the instruction. By the time we can restart, the
295  * real instruction will be there.
296  */
297  }
298 }
299 
300 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
301 {
302  unsigned long flags;
303  local_irq_save(flags);
304  kprobe_handler(regs);
305  local_irq_restore(flags);
306  return 0;
307 }
308 
309 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
310 {
311  struct kprobe *cur = kprobe_running();
312  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
313 
314  switch (kcb->kprobe_status) {
315  case KPROBE_HIT_SS:
316  case KPROBE_REENTER:
317  /*
318  * We are here because the instruction being single
319  * stepped caused a page fault. We reset the current
320  * kprobe and the PC to point back to the probe address
321  * and allow the page fault handler to continue as a
322  * normal page fault.
323  */
324  regs->ARM_pc = (long)cur->addr;
325  if (kcb->kprobe_status == KPROBE_REENTER) {
326  restore_previous_kprobe(kcb);
327  } else {
328  reset_current_kprobe();
329  }
330  break;
331 
332  case KPROBE_HIT_ACTIVE:
333  case KPROBE_HIT_SSDONE:
334  /*
335  * We increment the nmissed count for accounting,
336  * we can also use npre/npostfault count for accounting
337  * these specific fault cases.
338  */
340 
341  /*
342  * We come here because instructions in the pre/post
343  * handler caused the page_fault, this could happen
344  * if handler tries to access user space by
345  * copy_from_user(), get_user() etc. Let the
346  * user-specified handler try to fix it.
347  */
348  if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
349  return 1;
350  break;
351 
352  default:
353  break;
354  }
355 
356  return 0;
357 }
358 
360  unsigned long val, void *data)
361 {
362  /*
363  * notify_die() is currently never called on ARM,
364  * so this callback is currently empty.
365  */
366  return NOTIFY_DONE;
367 }
368 
369 /*
370  * When a retprobed function returns, trampoline_handler() is called,
371  * calling the kretprobe's handler. We construct a struct pt_regs to
372  * give a view of registers r0-r11 to the user return-handler. This is
373  * not a complete pt_regs structure, but that should be plenty sufficient
374  * for kretprobe handlers which should normally be interested in r0 only
375  * anyway.
376  */
378 {
379  __asm__ __volatile__ (
380  "stmdb sp!, {r0 - r11} \n\t"
381  "mov r0, sp \n\t"
382  "bl trampoline_handler \n\t"
383  "mov lr, r0 \n\t"
384  "ldmia sp!, {r0 - r11} \n\t"
385 #ifdef CONFIG_THUMB2_KERNEL
386  "bx lr \n\t"
387 #else
388  "mov pc, lr \n\t"
389 #endif
390  : : : "memory");
391 }
392 
393 /* Called from kretprobe_trampoline */
394 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
395 {
396  struct kretprobe_instance *ri = NULL;
397  struct hlist_head *head, empty_rp;
398  struct hlist_node *node, *tmp;
399  unsigned long flags, orig_ret_address = 0;
400  unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
401 
402  INIT_HLIST_HEAD(&empty_rp);
403  kretprobe_hash_lock(current, &head, &flags);
404 
405  /*
406  * It is possible to have multiple instances associated with a given
407  * task either because multiple functions in the call path have
408  * a return probe installed on them, and/or more than one return
409  * probe was registered for a target function.
410  *
411  * We can handle this because:
412  * - instances are always inserted at the head of the list
413  * - when multiple return probes are registered for the same
414  * function, the first instance's ret_addr will point to the
415  * real return address, and all the rest will point to
416  * kretprobe_trampoline
417  */
418  hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
419  if (ri->task != current)
420  /* another task is sharing our hash bucket */
421  continue;
422 
423  if (ri->rp && ri->rp->handler) {
424  __get_cpu_var(current_kprobe) = &ri->rp->kp;
425  get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
426  ri->rp->handler(ri, regs);
427  __get_cpu_var(current_kprobe) = NULL;
428  }
429 
430  orig_ret_address = (unsigned long)ri->ret_addr;
431  recycle_rp_inst(ri, &empty_rp);
432 
433  if (orig_ret_address != trampoline_address)
434  /*
435  * This is the real return address. Any other
436  * instances associated with this task are for
437  * other calls deeper on the call stack
438  */
439  break;
440  }
441 
442  kretprobe_assert(ri, orig_ret_address, trampoline_address);
444 
445  hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
446  hlist_del(&ri->hlist);
447  kfree(ri);
448  }
449 
450  return (void *)orig_ret_address;
451 }
452 
454  struct pt_regs *regs)
455 {
456  ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
457 
458  /* Replace the return addr with trampoline addr. */
459  regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
460 }
461 
462 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
463 {
464  struct jprobe *jp = container_of(p, struct jprobe, kp);
465  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
466  long sp_addr = regs->ARM_sp;
467  long cpsr;
468 
469  kcb->jprobe_saved_regs = *regs;
470  memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
471  regs->ARM_pc = (long)jp->entry;
472 
473  cpsr = regs->ARM_cpsr | PSR_I_BIT;
474 #ifdef CONFIG_THUMB2_KERNEL
475  /* Set correct Thumb state in cpsr */
476  if (regs->ARM_pc & 1)
477  cpsr |= PSR_T_BIT;
478  else
479  cpsr &= ~PSR_T_BIT;
480 #endif
481  regs->ARM_cpsr = cpsr;
482 
483  preempt_disable();
484  return 1;
485 }
486 
488 {
489  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
490 
491  __asm__ __volatile__ (
492  /*
493  * Setup an empty pt_regs. Fill SP and PC fields as
494  * they're needed by longjmp_break_handler.
495  *
496  * We allocate some slack between the original SP and start of
497  * our fabricated regs. To be precise we want to have worst case
498  * covered which is STMFD with all 16 regs so we allocate 2 *
499  * sizeof(struct_pt_regs)).
500  *
501  * This is to prevent any simulated instruction from writing
502  * over the regs when they are accessing the stack.
503  */
504 #ifdef CONFIG_THUMB2_KERNEL
505  "sub r0, %0, %1 \n\t"
506  "mov sp, r0 \n\t"
507 #else
508  "sub sp, %0, %1 \n\t"
509 #endif
510  "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
511  "str %0, [sp, %2] \n\t"
512  "str r0, [sp, %3] \n\t"
513  "mov r0, sp \n\t"
514  "bl kprobe_handler \n\t"
515 
516  /*
517  * Return to the context saved by setjmp_pre_handler
518  * and restored by longjmp_break_handler.
519  */
520 #ifdef CONFIG_THUMB2_KERNEL
521  "ldr lr, [sp, %2] \n\t" /* lr = saved sp */
522  "ldrd r0, r1, [sp, %5] \n\t" /* r0,r1 = saved lr,pc */
523  "ldr r2, [sp, %4] \n\t" /* r2 = saved psr */
524  "stmdb lr!, {r0, r1, r2} \n\t" /* push saved lr and */
525  /* rfe context */
526  "ldmia sp, {r0 - r12} \n\t"
527  "mov sp, lr \n\t"
528  "ldr lr, [sp], #4 \n\t"
529  "rfeia sp! \n\t"
530 #else
531  "ldr r0, [sp, %4] \n\t"
532  "msr cpsr_cxsf, r0 \n\t"
533  "ldmia sp, {r0 - pc} \n\t"
534 #endif
535  :
536  : "r" (kcb->jprobe_saved_regs.ARM_sp),
537  "I" (sizeof(struct pt_regs) * 2),
538  "J" (offsetof(struct pt_regs, ARM_sp)),
539  "J" (offsetof(struct pt_regs, ARM_pc)),
540  "J" (offsetof(struct pt_regs, ARM_cpsr)),
541  "J" (offsetof(struct pt_regs, ARM_lr))
542  : "memory", "cc");
543 }
544 
545 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
546 {
547  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
548  long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
549  long orig_sp = regs->ARM_sp;
550  struct jprobe *jp = container_of(p, struct jprobe, kp);
551 
552  if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
553  if (orig_sp != stack_addr) {
554  struct pt_regs *saved_regs =
555  (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
556  printk("current sp %lx does not match saved sp %lx\n",
557  orig_sp, stack_addr);
558  printk("Saved registers for jprobe %p\n", jp);
559  show_regs(saved_regs);
560  printk("Current registers\n");
561  show_regs(regs);
562  BUG();
563  }
564  *regs = kcb->jprobe_saved_regs;
565  memcpy((void *)stack_addr, kcb->jprobes_stack,
566  MIN_STACK_SIZE(stack_addr));
568  return 1;
569  }
570  return 0;
571 }
572 
574 {
575  return 0;
576 }
577 
578 #ifdef CONFIG_THUMB2_KERNEL
579 
580 static struct undef_hook kprobes_thumb16_break_hook = {
581  .instr_mask = 0xffff,
583  .cpsr_mask = MODE_MASK,
584  .cpsr_val = SVC_MODE,
585  .fn = kprobe_trap_handler,
586 };
587 
588 static struct undef_hook kprobes_thumb32_break_hook = {
589  .instr_mask = 0xffffffff,
591  .cpsr_mask = MODE_MASK,
592  .cpsr_val = SVC_MODE,
593  .fn = kprobe_trap_handler,
594 };
595 
596 #else /* !CONFIG_THUMB2_KERNEL */
597 
598 static struct undef_hook kprobes_arm_break_hook = {
599  .instr_mask = 0x0fffffff,
601  .cpsr_mask = MODE_MASK,
602  .cpsr_val = SVC_MODE,
603  .fn = kprobe_trap_handler,
604 };
605 
606 #endif /* !CONFIG_THUMB2_KERNEL */
607 
609 {
611 #ifdef CONFIG_THUMB2_KERNEL
612  register_undef_hook(&kprobes_thumb16_break_hook);
613  register_undef_hook(&kprobes_thumb32_break_hook);
614 #else
615  register_undef_hook(&kprobes_arm_break_hook);
616 #endif
617  return 0;
618 }