Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
process.c
Go to the documentation of this file.
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  * David Mosberger-Tang <[email protected]>
6  * 04/11/17 Ashok Raj <[email protected]> Added CPU Hotplug Support
7  *
8  * 2005-10-07 Keith Owens <[email protected]>
9  * Add notify_die() hooks.
10  */
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/notifier.h>
21 #include <linux/personality.h>
22 #include <linux/sched.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 #include <linux/utsname.h>
31 #include <linux/tracehook.h>
32 #include <linux/rcupdate.h>
33 
34 #include <asm/cpu.h>
35 #include <asm/delay.h>
36 #include <asm/elf.h>
37 #include <asm/irq.h>
38 #include <asm/kexec.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sal.h>
42 #include <asm/switch_to.h>
43 #include <asm/tlbflush.h>
44 #include <asm/uaccess.h>
45 #include <asm/unwind.h>
46 #include <asm/user.h>
47 
48 #include "entry.h"
49 
50 #ifdef CONFIG_PERFMON
51 # include <asm/perfmon.h>
52 #endif
53 
54 #include "sigframe.h"
55 
57 
64 
65 void
67 {
68  unsigned long ip, sp, bsp;
69  char buf[128]; /* don't make it so big that it overflows the stack! */
70 
71  printk("\nCall Trace:\n");
72  do {
73  unw_get_ip(info, &ip);
74  if (ip == 0)
75  break;
76 
77  unw_get_sp(info, &sp);
78  unw_get_bsp(info, &bsp);
79  snprintf(buf, sizeof(buf),
80  " [<%016lx>] %%s\n"
81  " sp=%016lx bsp=%016lx\n",
82  ip, sp, bsp);
83  print_symbol(buf, ip);
84  } while (unw_unwind(info) >= 0);
85 }
86 
87 void
88 show_stack (struct task_struct *task, unsigned long *sp)
89 {
90  if (!task)
92  else {
93  struct unw_frame_info info;
94 
95  unw_init_from_blocked_task(&info, task);
96  ia64_do_show_stack(&info, NULL);
97  }
98 }
99 
100 void
102 {
103  show_stack(NULL, NULL);
104 }
105 
107 
108 void
110 {
111  unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
112 
113  print_modules();
114  printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
115  smp_processor_id(), current->comm);
116  printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
117  regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
118  init_utsname()->release);
119  print_symbol("ip is at %s\n", ip);
120  printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
121  regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
122  printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
123  regs->ar_rnat, regs->ar_bspstore, regs->pr);
124  printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
125  regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
126  printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
127  printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
128  printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
129  regs->f6.u.bits[1], regs->f6.u.bits[0],
130  regs->f7.u.bits[1], regs->f7.u.bits[0]);
131  printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
132  regs->f8.u.bits[1], regs->f8.u.bits[0],
133  regs->f9.u.bits[1], regs->f9.u.bits[0]);
134  printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
135  regs->f10.u.bits[1], regs->f10.u.bits[0],
136  regs->f11.u.bits[1], regs->f11.u.bits[0]);
137 
138  printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
139  printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
140  printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
141  printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
142  printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
143  printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
144  printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
145  printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
146  printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
147 
148  if (user_mode(regs)) {
149  /* print the stacked registers */
150  unsigned long val, *bsp, ndirty;
151  int i, sof, is_nat = 0;
152 
153  sof = regs->cr_ifs & 0x7f; /* size of frame */
154  ndirty = (regs->loadrs >> 19);
155  bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
156  for (i = 0; i < sof; ++i) {
157  get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
158  printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
159  ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
160  }
161  } else
162  show_stack(NULL, NULL);
163 }
164 
165 /* local support for deprecated console_print */
166 void
167 console_print(const char *s)
168 {
169  printk(KERN_EMERG "%s", s);
170 }
171 
172 void
174 {
175  if (fsys_mode(current, &scr->pt)) {
176  /*
177  * defer signal-handling etc. until we return to
178  * privilege-level 0.
179  */
180  if (!ia64_psr(&scr->pt)->lp)
181  ia64_psr(&scr->pt)->lp = 1;
182  return;
183  }
184 
185 #ifdef CONFIG_PERFMON
186  if (current->thread.pfm_needs_checking)
187  /*
188  * Note: pfm_handle_work() allow us to call it with interrupts
189  * disabled, and may enable interrupts within the function.
190  */
191  pfm_handle_work();
192 #endif
193 
194  /* deal with pending signal delivery */
195  if (test_thread_flag(TIF_SIGPENDING)) {
196  local_irq_enable(); /* force interrupt enable */
197  ia64_do_signal(scr, in_syscall);
198  }
199 
200  if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) {
201  local_irq_enable(); /* force interrupt enable */
202  tracehook_notify_resume(&scr->pt);
203  }
204 
205  /* copy user rbs to kernel rbs */
206  if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
207  local_irq_enable(); /* force interrupt enable */
208  ia64_sync_krbs();
209  }
210 
211  local_irq_disable(); /* force interrupt disable */
212 }
213 
214 static int pal_halt = 1;
215 static int can_do_pal_halt = 1;
216 
217 static int __init nohalt_setup(char * str)
218 {
219  pal_halt = can_do_pal_halt = 0;
220  return 1;
221 }
222 __setup("nohalt", nohalt_setup);
223 
224 void
226 {
227  can_do_pal_halt = pal_halt && status;
228 }
229 
230 /*
231  * We use this if we don't have any better idle routine..
232  */
233 void
235 {
237  while (!need_resched()) {
238  if (can_do_pal_halt) {
240  if (!need_resched()) {
241  safe_halt();
242  }
244  } else
245  cpu_relax();
246  }
247 }
248 
249 #ifdef CONFIG_HOTPLUG_CPU
250 /* We don't actually take CPU down, just spin without interrupts. */
251 static inline void play_dead(void)
252 {
253  unsigned int this_cpu = smp_processor_id();
254 
255  /* Ack it */
256  __get_cpu_var(cpu_state) = CPU_DEAD;
257 
258  max_xtp();
260  idle_task_exit();
261  ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
262  /*
263  * The above is a point of no-return, the processor is
264  * expected to be in SAL loop now.
265  */
266  BUG();
267 }
268 #else
269 static inline void play_dead(void)
270 {
271  BUG();
272 }
273 #endif /* CONFIG_HOTPLUG_CPU */
274 
275 void __attribute__((noreturn))
276 cpu_idle (void)
277 {
278  void (*mark_idle)(int) = ia64_mark_idle;
279  int cpu = smp_processor_id();
280 
281  /* endless idle loop with no priority at all */
282  while (1) {
283  rcu_idle_enter();
284  if (can_do_pal_halt) {
285  current_thread_info()->status &= ~TS_POLLING;
286  /*
287  * TS_POLLING-cleared state must be visible before we
288  * test NEED_RESCHED:
289  */
290  smp_mb();
291  } else {
292  current_thread_info()->status |= TS_POLLING;
293  }
294 
295  if (!need_resched()) {
296  void (*idle)(void);
297 #ifdef CONFIG_SMP
298  min_xtp();
299 #endif
300  rmb();
301  if (mark_idle)
302  (*mark_idle)(1);
303 
304  idle = pm_idle;
305  if (!idle)
306  idle = default_idle;
307  (*idle)();
308  if (mark_idle)
309  (*mark_idle)(0);
310 #ifdef CONFIG_SMP
311  normal_xtp();
312 #endif
313  }
314  rcu_idle_exit();
316  check_pgt_cache();
317  if (cpu_is_offline(cpu))
318  play_dead();
319  }
320 }
321 
322 void
324 {
325 #ifdef CONFIG_PERFMON
326  unsigned long info;
327 #endif
328 
329  if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
330  ia64_save_debug_regs(&task->thread.dbr[0]);
331 
332 #ifdef CONFIG_PERFMON
333  if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
334  pfm_save_regs(task);
335 
336  info = __get_cpu_var(pfm_syst_info);
337  if (info & PFM_CPUINFO_SYST_WIDE)
338  pfm_syst_wide_update_task(task, info, 0);
339 #endif
340 }
341 
342 void
344 {
345 #ifdef CONFIG_PERFMON
346  unsigned long info;
347 #endif
348 
349  if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
350  ia64_load_debug_regs(&task->thread.dbr[0]);
351 
352 #ifdef CONFIG_PERFMON
353  if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
354  pfm_load_regs(task);
355 
356  info = __get_cpu_var(pfm_syst_info);
357  if (info & PFM_CPUINFO_SYST_WIDE)
358  pfm_syst_wide_update_task(task, info, 1);
359 #endif
360 }
361 
362 /*
363  * Copy the state of an ia-64 thread.
364  *
365  * We get here through the following call chain:
366  *
367  * from user-level: from kernel:
368  *
369  * <clone syscall> <some kernel call frames>
370  * sys_clone :
371  * do_fork do_fork
372  * copy_thread copy_thread
373  *
374  * This means that the stack layout is as follows:
375  *
376  * +---------------------+ (highest addr)
377  * | struct pt_regs |
378  * +---------------------+
379  * | struct switch_stack |
380  * +---------------------+
381  * | |
382  * | memory stack |
383  * | | <-- sp (lowest addr)
384  * +---------------------+
385  *
386  * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
387  * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
388  * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
389  * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
390  * the stack is page aligned and the page size is at least 4KB, this is always the case,
391  * so there is nothing to worry about.
392  */
393 int
394 copy_thread(unsigned long clone_flags,
395  unsigned long user_stack_base, unsigned long user_stack_size,
396  struct task_struct *p, struct pt_regs *regs)
397 {
398  extern char ia64_ret_from_clone;
399  struct switch_stack *child_stack, *stack;
400  unsigned long rbs, child_rbs, rbs_size;
401  struct pt_regs *child_ptregs;
402  int retval = 0;
403 
404 #ifdef CONFIG_SMP
405  /*
406  * For SMP idle threads, fork_by_hand() calls do_fork with
407  * NULL regs.
408  */
409  if (!regs)
410  return 0;
411 #endif
412 
413  stack = ((struct switch_stack *) regs) - 1;
414 
415  child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
416  child_stack = (struct switch_stack *) child_ptregs - 1;
417 
418  /* copy parent's switch_stack & pt_regs to child: */
419  memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
420 
421  rbs = (unsigned long) current + IA64_RBS_OFFSET;
422  child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
423  rbs_size = stack->ar_bspstore - rbs;
424 
425  /* copy the parent's register backing store to the child: */
426  memcpy((void *) child_rbs, (void *) rbs, rbs_size);
427 
428  if (likely(user_mode(child_ptregs))) {
429  if (clone_flags & CLONE_SETTLS)
430  child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
431  if (user_stack_base) {
432  child_ptregs->r12 = user_stack_base + user_stack_size - 16;
433  child_ptregs->ar_bspstore = user_stack_base;
434  child_ptregs->ar_rnat = 0;
435  child_ptregs->loadrs = 0;
436  }
437  } else {
438  /*
439  * Note: we simply preserve the relative position of
440  * the stack pointer here. There is no need to
441  * allocate a scratch area here, since that will have
442  * been taken care of by the caller of sys_clone()
443  * already.
444  */
445  child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
446  child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
447  }
448  child_stack->ar_bspstore = child_rbs + rbs_size;
449  child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
450 
451  /* copy parts of thread_struct: */
452  p->thread.ksp = (unsigned long) child_stack - 16;
453 
454  /* stop some PSR bits from being inherited.
455  * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
456  * therefore we must specify them explicitly here and not include them in
457  * IA64_PSR_BITS_TO_CLEAR.
458  */
459  child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
461 
462  /*
463  * NOTE: The calling convention considers all floating point
464  * registers in the high partition (fph) to be scratch. Since
465  * the only way to get to this point is through a system call,
466  * we know that the values in fph are all dead. Hence, there
467  * is no need to inherit the fph state from the parent to the
468  * child and all we have to do is to make sure that
469  * IA64_THREAD_FPH_VALID is cleared in the child.
470  *
471  * XXX We could push this optimization a bit further by
472  * clearing IA64_THREAD_FPH_VALID on ANY system call.
473  * However, it's not clear this is worth doing. Also, it
474  * would be a slight deviation from the normal Linux system
475  * call behavior where scratch registers are preserved across
476  * system calls (unless used by the system call itself).
477  */
478 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
479  | IA64_THREAD_PM_VALID)
480 # define THREAD_FLAGS_TO_SET 0
481  p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
483  ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
484 
485 #ifdef CONFIG_PERFMON
486  if (current->thread.pfm_context)
487  pfm_inherit(p, child_ptregs);
488 #endif
489  return retval;
490 }
491 
492 static void
493 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
494 {
495  unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
496  unsigned long uninitialized_var(ip); /* GCC be quiet */
497  elf_greg_t *dst = arg;
498  struct pt_regs *pt;
499  char nat;
500  int i;
501 
502  memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
503 
504  if (unw_unwind_to_user(info) < 0)
505  return;
506 
507  unw_get_sp(info, &sp);
508  pt = (struct pt_regs *) (sp + 16);
509 
510  urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
511 
512  if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
513  return;
514 
515  ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
516  &ar_rnat);
517 
518  /*
519  * coredump format:
520  * r0-r31
521  * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
522  * predicate registers (p0-p63)
523  * b0-b7
524  * ip cfm user-mask
525  * ar.rsc ar.bsp ar.bspstore ar.rnat
526  * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
527  */
528 
529  /* r0 is zero */
530  for (i = 1, mask = (1UL << i); i < 32; ++i) {
531  unw_get_gr(info, i, &dst[i], &nat);
532  if (nat)
533  nat_bits |= mask;
534  mask <<= 1;
535  }
536  dst[32] = nat_bits;
537  unw_get_pr(info, &dst[33]);
538 
539  for (i = 0; i < 8; ++i)
540  unw_get_br(info, i, &dst[34 + i]);
541 
542  unw_get_rp(info, &ip);
543  dst[42] = ip + ia64_psr(pt)->ri;
544  dst[43] = cfm;
545  dst[44] = pt->cr_ipsr & IA64_PSR_UM;
546 
547  unw_get_ar(info, UNW_AR_RSC, &dst[45]);
548  /*
549  * For bsp and bspstore, unw_get_ar() would return the kernel
550  * addresses, but we need the user-level addresses instead:
551  */
552  dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
553  dst[47] = pt->ar_bspstore;
554  dst[48] = ar_rnat;
555  unw_get_ar(info, UNW_AR_CCV, &dst[49]);
556  unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
557  unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
558  dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
559  unw_get_ar(info, UNW_AR_LC, &dst[53]);
560  unw_get_ar(info, UNW_AR_EC, &dst[54]);
561  unw_get_ar(info, UNW_AR_CSD, &dst[55]);
562  unw_get_ar(info, UNW_AR_SSD, &dst[56]);
563 }
564 
565 void
566 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
567 {
568  elf_fpreg_t *dst = arg;
569  int i;
570 
571  memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
572 
573  if (unw_unwind_to_user(info) < 0)
574  return;
575 
576  /* f0 is 0.0, f1 is 1.0 */
577 
578  for (i = 2; i < 32; ++i)
579  unw_get_fr(info, i, dst + i);
580 
581  ia64_flush_fph(task);
582  if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
583  memcpy(dst + 32, task->thread.fph, 96*16);
584 }
585 
586 void
587 do_copy_regs (struct unw_frame_info *info, void *arg)
588 {
589  do_copy_task_regs(current, info, arg);
590 }
591 
592 void
593 do_dump_fpu (struct unw_frame_info *info, void *arg)
594 {
595  do_dump_task_fpu(current, info, arg);
596 }
597 
598 void
600 {
602 }
603 
604 int
605 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
606 {
608  return 1; /* f0-f31 are always valid so we always return 1 */
609 }
610 
611 long
612 sys_execve (const char __user *filename,
613  const char __user *const __user *argv,
614  const char __user *const __user *envp,
615  struct pt_regs *regs)
616 {
617  struct filename *fname;
618  int error;
619 
620  fname = getname(filename);
621  error = PTR_ERR(fname);
622  if (IS_ERR(fname))
623  goto out;
624  error = do_execve(fname->name, argv, envp, regs);
625  putname(fname);
626 out:
627  return error;
628 }
629 
630 pid_t
631 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
632 {
633  extern void start_kernel_thread (void);
634  unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
635  struct {
636  struct switch_stack sw;
637  struct pt_regs pt;
638  } regs;
639 
640  memset(&regs, 0, sizeof(regs));
641  regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
642  regs.pt.r1 = helper_fptr[1]; /* set GP */
643  regs.pt.r9 = (unsigned long) fn; /* 1st argument */
644  regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
645  /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
646  regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
647  regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
648  regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
649  regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
650  regs.sw.pr = (1 << PRED_KERNEL_STACK);
651  return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
652 }
654 
655 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
656 int
657 kernel_thread_helper (int (*fn)(void *), void *arg)
658 {
659  return (*fn)(arg);
660 }
661 
662 /*
663  * Flush thread state. This is called when a thread does an execve().
664  */
665 void
667 {
668  /* drop floating-point and debug-register state if it exists: */
671 }
672 
673 /*
674  * Clean up state associated with current thread. This is called when
675  * the thread calls exit().
676  */
677 void
679 {
680 
682 #ifdef CONFIG_PERFMON
683  /* if needed, stop monitoring and flush state to perfmon context */
684  if (current->thread.pfm_context)
686 
687  /* free debug register resources */
688  if (current->thread.flags & IA64_THREAD_DBG_VALID)
690 #endif
691 }
692 
693 unsigned long
695 {
696  struct unw_frame_info info;
697  unsigned long ip;
698  int count = 0;
699 
700  if (!p || p == current || p->state == TASK_RUNNING)
701  return 0;
702 
703  /*
704  * Note: p may not be a blocked task (it could be current or
705  * another process running on some other CPU. Rather than
706  * trying to determine if p is really blocked, we just assume
707  * it's blocked and rely on the unwind routines to fail
708  * gracefully if the process wasn't really blocked after all.
709  * --davidm 99/12/15
710  */
711  unw_init_from_blocked_task(&info, p);
712  do {
713  if (p->state == TASK_RUNNING)
714  return 0;
715  if (unw_unwind(&info) < 0)
716  return 0;
717  unw_get_ip(&info, &ip);
718  if (!in_sched_functions(ip))
719  return ip;
720  } while (count++ < 16);
721  return 0;
722 }
723 
724 void
725 cpu_halt (void)
726 {
728  unsigned long min_power;
729  int i, min_power_state;
730 
731  if (ia64_pal_halt_info(power_info) != 0)
732  return;
733 
734  min_power_state = 0;
735  min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
736  for (i = 1; i < 8; ++i)
737  if (power_info[i].pal_power_mgmt_info_s.im
738  && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
739  min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
740  min_power_state = i;
741  }
742 
743  while (1)
744  ia64_pal_halt(min_power_state);
745 }
746 
748 {
749 #ifdef CONFIG_HOTPLUG_CPU
750  int cpu;
751 
752  for_each_online_cpu(cpu) {
753  if (cpu != smp_processor_id())
754  cpu_down(cpu);
755  }
756 #endif
757 #ifdef CONFIG_KEXEC
759 #endif
760 }
761 
762 void
763 machine_restart (char *restart_cmd)
764 {
765  (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
766  (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
767 }
768 
769 void
771 {
772  (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
773  cpu_halt();
774 }
775 
776 void
778 {
779  if (pm_power_off)
780  pm_power_off();
781  machine_halt();
782 }
783