Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
init.c
Go to the documentation of this file.
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  * David Mosberger-Tang <[email protected]>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9 
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/memblock.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/personality.h>
18 #include <linux/reboot.h>
19 #include <linux/slab.h>
20 #include <linux/swap.h>
21 #include <linux/proc_fs.h>
22 #include <linux/bitops.h>
23 #include <linux/kexec.h>
24 
25 #include <asm/dma.h>
26 #include <asm/io.h>
27 #include <asm/machvec.h>
28 #include <asm/numa.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33 #include <asm/tlb.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include <asm/mca.h>
37 #include <asm/paravirt.h>
38 
39 extern void ia64_tlb_init (void);
40 
41 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
42 
43 #ifdef CONFIG_VIRTUAL_MEM_MAP
44 unsigned long VMALLOC_END = VMALLOC_END_INIT;
46 struct page *vmem_map;
47 EXPORT_SYMBOL(vmem_map);
48 #endif
49 
50 struct page *zero_page_memmap_ptr; /* map entry for zero page */
51 EXPORT_SYMBOL(zero_page_memmap_ptr);
52 
53 void
55 {
56  unsigned long addr;
57  struct page *page;
58 
59  page = pte_page(pte);
60  addr = (unsigned long) page_address(page);
61 
62  if (test_bit(PG_arch_1, &page->flags))
63  return; /* i-cache is already coherent with d-cache */
64 
65  flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
66  set_bit(PG_arch_1, &page->flags); /* mark page as clean */
67 }
68 
69 /*
70  * Since DMA is i-cache coherent, any (complete) pages that were written via
71  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
72  * flush them when they get mapped into an executable vm-area.
73  */
74 void
75 dma_mark_clean(void *addr, size_t size)
76 {
77  unsigned long pg_addr, end;
78 
79  pg_addr = PAGE_ALIGN((unsigned long) addr);
80  end = (unsigned long) addr + size;
81  while (pg_addr + PAGE_SIZE <= end) {
82  struct page *page = virt_to_page(pg_addr);
83  set_bit(PG_arch_1, &page->flags);
84  pg_addr += PAGE_SIZE;
85  }
86 }
87 
88 inline void
90 {
91  unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
92 
93  if (stack_size > MAX_USER_STACK_SIZE)
94  stack_size = MAX_USER_STACK_SIZE;
95  current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
96 }
97 
98 /*
99  * This performs some platform-dependent address space initialization.
100  * On IA-64, we want to setup the VM area for the register backing
101  * store (which grows upwards) and install the gateway page which is
102  * used for signal trampolines, etc.
103  */
104 void
106 {
107  struct vm_area_struct *vma;
108 
110 
111  /*
112  * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
113  * the problem. When the process attempts to write to the register backing store
114  * for the first time, it will get a SEGFAULT in this case.
115  */
116  vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
117  if (vma) {
118  INIT_LIST_HEAD(&vma->anon_vma_chain);
119  vma->vm_mm = current->mm;
120  vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
121  vma->vm_end = vma->vm_start + PAGE_SIZE;
122  vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
124  down_write(&current->mm->mmap_sem);
125  if (insert_vm_struct(current->mm, vma)) {
126  up_write(&current->mm->mmap_sem);
128  return;
129  }
130  up_write(&current->mm->mmap_sem);
131  }
132 
133  /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
134  if (!(current->personality & MMAP_PAGE_ZERO)) {
135  vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
136  if (vma) {
137  INIT_LIST_HEAD(&vma->anon_vma_chain);
138  vma->vm_mm = current->mm;
139  vma->vm_end = PAGE_SIZE;
141  vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
142  VM_DONTEXPAND | VM_DONTDUMP;
143  down_write(&current->mm->mmap_sem);
144  if (insert_vm_struct(current->mm, vma)) {
145  up_write(&current->mm->mmap_sem);
147  return;
148  }
149  up_write(&current->mm->mmap_sem);
150  }
151  }
152 }
153 
154 void
156 {
157  unsigned long addr, eaddr;
158 
159  addr = (unsigned long) ia64_imva(__init_begin);
160  eaddr = (unsigned long) ia64_imva(__init_end);
161  while (addr < eaddr) {
162  ClearPageReserved(virt_to_page(addr));
163  init_page_count(virt_to_page(addr));
164  free_page(addr);
165  ++totalram_pages;
166  addr += PAGE_SIZE;
167  }
168  printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
169  (__init_end - __init_begin) >> 10);
170 }
171 
172 void __init
173 free_initrd_mem (unsigned long start, unsigned long end)
174 {
175  struct page *page;
176  /*
177  * EFI uses 4KB pages while the kernel can use 4KB or bigger.
178  * Thus EFI and the kernel may have different page sizes. It is
179  * therefore possible to have the initrd share the same page as
180  * the end of the kernel (given current setup).
181  *
182  * To avoid freeing/using the wrong page (kernel sized) we:
183  * - align up the beginning of initrd
184  * - align down the end of initrd
185  *
186  * | |
187  * |=============| a000
188  * | |
189  * | |
190  * | | 9000
191  * |/////////////|
192  * |/////////////|
193  * |=============| 8000
194  * |///INITRD////|
195  * |/////////////|
196  * |/////////////| 7000
197  * | |
198  * |KKKKKKKKKKKKK|
199  * |=============| 6000
200  * |KKKKKKKKKKKKK|
201  * |KKKKKKKKKKKKK|
202  * K=kernel using 8KB pages
203  *
204  * In this example, we must free page 8000 ONLY. So we must align up
205  * initrd_start and keep initrd_end as is.
206  */
207  start = PAGE_ALIGN(start);
208  end = end & PAGE_MASK;
209 
210  if (start < end)
211  printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
212 
213  for (; start < end; start += PAGE_SIZE) {
214  if (!virt_addr_valid(start))
215  continue;
216  page = virt_to_page(start);
217  ClearPageReserved(page);
218  init_page_count(page);
219  free_page(start);
220  ++totalram_pages;
221  }
222 }
223 
224 /*
225  * This installs a clean page in the kernel's page table.
226  */
227 static struct page * __init
228 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
229 {
230  pgd_t *pgd;
231  pud_t *pud;
232  pmd_t *pmd;
233  pte_t *pte;
234 
235  if (!PageReserved(page))
236  printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
237  page_address(page));
238 
239  pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
240 
241  {
242  pud = pud_alloc(&init_mm, pgd, address);
243  if (!pud)
244  goto out;
245  pmd = pmd_alloc(&init_mm, pud, address);
246  if (!pmd)
247  goto out;
248  pte = pte_alloc_kernel(pmd, address);
249  if (!pte)
250  goto out;
251  if (!pte_none(*pte))
252  goto out;
253  set_pte(pte, mk_pte(page, pgprot));
254  }
255  out:
256  /* no need for flush_tlb */
257  return page;
258 }
259 
260 static void __init
261 setup_gate (void)
262 {
263  void *gate_section;
264  struct page *page;
265 
266  /*
267  * Map the gate page twice: once read-only to export the ELF
268  * headers etc. and once execute-only page to enable
269  * privilege-promotion via "epc":
270  */
271  gate_section = paravirt_get_gate_section();
272  page = virt_to_page(ia64_imva(gate_section));
273  put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
274 #ifdef HAVE_BUGGY_SEGREL
275  page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
276  put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
277 #else
278  put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
279  /* Fill in the holes (if any) with read-only zero pages: */
280  {
281  unsigned long addr;
282 
283  for (addr = GATE_ADDR + PAGE_SIZE;
284  addr < GATE_ADDR + PERCPU_PAGE_SIZE;
285  addr += PAGE_SIZE)
286  {
287  put_kernel_page(ZERO_PAGE(0), addr,
288  PAGE_READONLY);
289  put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
290  PAGE_READONLY);
291  }
292  }
293 #endif
294  ia64_patch_gate();
295 }
296 
297 void __devinit
299 {
300  unsigned long pta, impl_va_bits;
301  extern void __devinit tlb_init (void);
302 
303 #ifdef CONFIG_DISABLE_VHPT
304 # define VHPT_ENABLE_BIT 0
305 #else
306 # define VHPT_ENABLE_BIT 1
307 #endif
308 
309  /*
310  * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
311  * address space. The IA-64 architecture guarantees that at least 50 bits of
312  * virtual address space are implemented but if we pick a large enough page size
313  * (e.g., 64KB), the mapped address space is big enough that it will overlap with
314  * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
315  * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
316  * problem in practice. Alternatively, we could truncate the top of the mapped
317  * address space to not permit mappings that would overlap with the VMLPT.
318  * --davidm 00/12/06
319  */
320 # define pte_bits 3
321 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
322  /*
323  * The virtual page table has to cover the entire implemented address space within
324  * a region even though not all of this space may be mappable. The reason for
325  * this is that the Access bit and Dirty bit fault handlers perform
326  * non-speculative accesses to the virtual page table, so the address range of the
327  * virtual page table itself needs to be covered by virtual page table.
328  */
329 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
330 # define POW2(n) (1ULL << (n))
331 
332  impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
333 
334  if (impl_va_bits < 51 || impl_va_bits > 61)
335  panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
336  /*
337  * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
338  * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
339  * the test makes sure that our mapped space doesn't overlap the
340  * unimplemented hole in the middle of the region.
341  */
343  (mapped_space_bits > impl_va_bits - 1))
344  panic("Cannot build a big enough virtual-linear page table"
345  " to cover mapped address space.\n"
346  " Try using a smaller page size.\n");
347 
348 
349  /* place the VMLPT at the end of each page-table mapped region: */
350  pta = POW2(61) - POW2(vmlpt_bits);
351 
352  /*
353  * Set the (virtually mapped linear) page table address. Bit
354  * 8 selects between the short and long format, bits 2-7 the
355  * size of the table, and bit 0 whether the VHPT walker is
356  * enabled.
357  */
358  ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
359 
360  ia64_tlb_init();
361 
362 #ifdef CONFIG_HUGETLB_PAGE
363  ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
364  ia64_srlz_d();
365 #endif
366 }
367 
368 #ifdef CONFIG_VIRTUAL_MEM_MAP
369 int vmemmap_find_next_valid_pfn(int node, int i)
370 {
371  unsigned long end_address, hole_next_pfn;
372  unsigned long stop_address;
373  pg_data_t *pgdat = NODE_DATA(node);
374 
375  end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
376  end_address = PAGE_ALIGN(end_address);
377 
378  stop_address = (unsigned long) &vmem_map[
379  pgdat->node_start_pfn + pgdat->node_spanned_pages];
380 
381  do {
382  pgd_t *pgd;
383  pud_t *pud;
384  pmd_t *pmd;
385  pte_t *pte;
386 
387  pgd = pgd_offset_k(end_address);
388  if (pgd_none(*pgd)) {
389  end_address += PGDIR_SIZE;
390  continue;
391  }
392 
393  pud = pud_offset(pgd, end_address);
394  if (pud_none(*pud)) {
395  end_address += PUD_SIZE;
396  continue;
397  }
398 
399  pmd = pmd_offset(pud, end_address);
400  if (pmd_none(*pmd)) {
401  end_address += PMD_SIZE;
402  continue;
403  }
404 
405  pte = pte_offset_kernel(pmd, end_address);
406 retry_pte:
407  if (pte_none(*pte)) {
408  end_address += PAGE_SIZE;
409  pte++;
410  if ((end_address < stop_address) &&
411  (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
412  goto retry_pte;
413  continue;
414  }
415  /* Found next valid vmem_map page */
416  break;
417  } while (end_address < stop_address);
418 
419  end_address = min(end_address, stop_address);
420  end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
421  hole_next_pfn = end_address / sizeof(struct page);
422  return hole_next_pfn - pgdat->node_start_pfn;
423 }
424 
425 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
426 {
427  unsigned long address, start_page, end_page;
428  struct page *map_start, *map_end;
429  int node;
430  pgd_t *pgd;
431  pud_t *pud;
432  pmd_t *pmd;
433  pte_t *pte;
434 
435  map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
436  map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
437 
438  start_page = (unsigned long) map_start & PAGE_MASK;
439  end_page = PAGE_ALIGN((unsigned long) map_end);
440  node = paddr_to_nid(__pa(start));
441 
442  for (address = start_page; address < end_page; address += PAGE_SIZE) {
443  pgd = pgd_offset_k(address);
444  if (pgd_none(*pgd))
446  pud = pud_offset(pgd, address);
447 
448  if (pud_none(*pud))
450  pmd = pmd_offset(pud, address);
451 
452  if (pmd_none(*pmd))
454  pte = pte_offset_kernel(pmd, address);
455 
456  if (pte_none(*pte))
458  PAGE_KERNEL));
459  }
460  return 0;
461 }
462 
463 struct memmap_init_callback_data {
464  struct page *start;
465  struct page *end;
466  int nid;
467  unsigned long zone;
468 };
469 
470 static int __meminit
471 virtual_memmap_init(u64 start, u64 end, void *arg)
472 {
473  struct memmap_init_callback_data *args;
474  struct page *map_start, *map_end;
475 
476  args = (struct memmap_init_callback_data *) arg;
477  map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
478  map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
479 
480  if (map_start < args->start)
481  map_start = args->start;
482  if (map_end > args->end)
483  map_end = args->end;
484 
485  /*
486  * We have to initialize "out of bounds" struct page elements that fit completely
487  * on the same pages that were allocated for the "in bounds" elements because they
488  * may be referenced later (and found to be "reserved").
489  */
490  map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
491  map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
492  / sizeof(struct page));
493 
494  if (map_start < map_end)
495  memmap_init_zone((unsigned long)(map_end - map_start),
496  args->nid, args->zone, page_to_pfn(map_start),
497  MEMMAP_EARLY);
498  return 0;
499 }
500 
501 void __meminit
502 memmap_init (unsigned long size, int nid, unsigned long zone,
503  unsigned long start_pfn)
504 {
505  if (!vmem_map)
506  memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
507  else {
508  struct page *start;
509  struct memmap_init_callback_data args;
510 
511  start = pfn_to_page(start_pfn);
512  args.start = start;
513  args.end = start + size;
514  args.nid = nid;
515  args.zone = zone;
516 
517  efi_memmap_walk(virtual_memmap_init, &args);
518  }
519 }
520 
521 int
522 ia64_pfn_valid (unsigned long pfn)
523 {
524  char byte;
525  struct page *pg = pfn_to_page(pfn);
526 
527  return (__get_user(byte, (char __user *) pg) == 0)
528  && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
529  || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
530 }
532 
533 int __init find_largest_hole(u64 start, u64 end, void *arg)
534 {
535  u64 *max_gap = arg;
536 
537  static u64 last_end = PAGE_OFFSET;
538 
539  /* NOTE: this algorithm assumes efi memmap table is ordered */
540 
541  if (*max_gap < (start - last_end))
542  *max_gap = start - last_end;
543  last_end = end;
544  return 0;
545 }
546 
547 #endif /* CONFIG_VIRTUAL_MEM_MAP */
548 
549 int __init register_active_ranges(u64 start, u64 len, int nid)
550 {
551  u64 end = start + len;
552 
553 #ifdef CONFIG_KEXEC
554  if (start > crashk_res.start && start < crashk_res.end)
555  start = crashk_res.end;
556  if (end > crashk_res.start && end < crashk_res.end)
557  end = crashk_res.start;
558 #endif
559 
560  if (start < end)
561  memblock_add_node(__pa(start), end - start, nid);
562  return 0;
563 }
564 
565 static int __init
566 count_reserved_pages(u64 start, u64 end, void *arg)
567 {
568  unsigned long num_reserved = 0;
569  unsigned long *count = arg;
570 
571  for (; start < end; start += PAGE_SIZE)
572  if (PageReserved(virt_to_page(start)))
573  ++num_reserved;
574  *count += num_reserved;
575  return 0;
576 }
577 
578 int
579 find_max_min_low_pfn (u64 start, u64 end, void *arg)
580 {
581  unsigned long pfn_start, pfn_end;
582 #ifdef CONFIG_FLATMEM
583  pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
584  pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
585 #else
586  pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
587  pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
588 #endif
589  min_low_pfn = min(min_low_pfn, pfn_start);
590  max_low_pfn = max(max_low_pfn, pfn_end);
591  return 0;
592 }
593 
594 /*
595  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
596  * system call handler. When this option is in effect, all fsyscalls will end up bubbling
597  * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
598  * useful for performance testing, but conceivably could also come in handy for debugging
599  * purposes.
600  */
601 
602 static int nolwsys __initdata;
603 
604 static int __init
605 nolwsys_setup (char *s)
606 {
607  nolwsys = 1;
608  return 1;
609 }
610 
611 __setup("nolwsys", nolwsys_setup);
612 
613 void __init
614 mem_init (void)
615 {
616  long reserved_pages, codesize, datasize, initsize;
617  pg_data_t *pgdat;
618  int i;
619 
620  BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
621  BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
622  BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
623 
624 #ifdef CONFIG_PCI
625  /*
626  * This needs to be called _after_ the command line has been parsed but _before_
627  * any drivers that may need the PCI DMA interface are initialized or bootmem has
628  * been freed.
629  */
631 #endif
632 
633 #ifdef CONFIG_FLATMEM
634  BUG_ON(!mem_map);
636 #endif
637 
639 
640  for_each_online_pgdat(pgdat)
641  if (pgdat->bdata->node_bootmem_map)
642  totalram_pages += free_all_bootmem_node(pgdat);
643 
644  reserved_pages = 0;
645  efi_memmap_walk(count_reserved_pages, &reserved_pages);
646 
647  codesize = (unsigned long) _etext - (unsigned long) _stext;
648  datasize = (unsigned long) _edata - (unsigned long) _etext;
649  initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
650 
651  printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
652  "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10),
653  num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
654  reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
655 
656 
657  /*
658  * For fsyscall entrpoints with no light-weight handler, use the ordinary
659  * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
660  * code can tell them apart.
661  */
662  for (i = 0; i < NR_syscalls; ++i) {
663  extern unsigned long sys_call_table[NR_syscalls];
664  unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
665 
666  if (!fsyscall_table[i] || nolwsys)
667  fsyscall_table[i] = sys_call_table[i] | 1;
668  }
669  setup_gate();
670 }
671 
672 #ifdef CONFIG_MEMORY_HOTPLUG
673 int arch_add_memory(int nid, u64 start, u64 size)
674 {
675  pg_data_t *pgdat;
676  struct zone *zone;
677  unsigned long start_pfn = start >> PAGE_SHIFT;
678  unsigned long nr_pages = size >> PAGE_SHIFT;
679  int ret;
680 
681  pgdat = NODE_DATA(nid);
682 
683  zone = pgdat->node_zones + ZONE_NORMAL;
684  ret = __add_pages(nid, zone, start_pfn, nr_pages);
685 
686  if (ret)
687  printk("%s: Problem encountered in __add_pages() as ret=%d\n",
688  __func__, ret);
689 
690  return ret;
691 }
692 #endif
693 
694 /*
695  * Even when CONFIG_IA32_SUPPORT is not enabled it is
696  * useful to have the Linux/x86 domain registered to
697  * avoid an attempted module load when emulators call
698  * personality(PER_LINUX32). This saves several milliseconds
699  * on each such call.
700  */
701 static struct exec_domain ia32_exec_domain;
702 
703 static int __init
704 per_linux32_init(void)
705 {
706  ia32_exec_domain.name = "Linux/x86";
707  ia32_exec_domain.handler = NULL;
708  ia32_exec_domain.pers_low = PER_LINUX32;
709  ia32_exec_domain.pers_high = PER_LINUX32;
710  ia32_exec_domain.signal_map = default_exec_domain.signal_map;
711  ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
712  register_exec_domain(&ia32_exec_domain);
713 
714  return 0;
715 }
716 
717 __initcall(per_linux32_init);