Linux Kernel  3.7.1
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pci.c
Go to the documentation of this file.
1 /*
2  * pci.c - Low-Level PCI Access in IA-64
3  *
4  * Derived from bios32.c of i386 tree.
5  *
6  * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7  * David Mosberger-Tang <davidm@hpl.hp.com>
8  * Bjorn Helgaas <bjorn.helgaas@hp.com>
9  * Copyright (C) 2004 Silicon Graphics, Inc.
10  *
11  * Note: Above list of copyright holders is incomplete...
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/bootmem.h>
23 #include <linux/export.h>
24 
25 #include <asm/machvec.h>
26 #include <asm/page.h>
27 #include <asm/io.h>
28 #include <asm/sal.h>
29 #include <asm/smp.h>
30 #include <asm/irq.h>
31 #include <asm/hw_irq.h>
32 
33 /*
34  * Low-level SAL-based PCI configuration access functions. Note that SAL
35  * calls are already serialized (via sal_lock), so we don't need another
36  * synchronization mechanism here.
37  */
38 
39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
40  (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
41 
42 /* SAL 3.2 adds support for extended config space. */
43 
44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
45  (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
46 
47 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
48  int reg, int len, u32 *value)
49 {
50  u64 addr, data = 0;
51  int mode, result;
52 
53  if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
54  return -EINVAL;
55 
56  if ((seg | reg) <= 255) {
57  addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
58  mode = 0;
59  } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
60  addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
61  mode = 1;
62  } else {
63  return -EINVAL;
64  }
65 
66  result = ia64_sal_pci_config_read(addr, mode, len, &data);
67  if (result != 0)
68  return -EINVAL;
69 
70  *value = (u32) data;
71  return 0;
72 }
73 
74 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
75  int reg, int len, u32 value)
76 {
77  u64 addr;
78  int mode, result;
79 
80  if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
81  return -EINVAL;
82 
83  if ((seg | reg) <= 255) {
84  addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
85  mode = 0;
86  } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
87  addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
88  mode = 1;
89  } else {
90  return -EINVAL;
91  }
92  result = ia64_sal_pci_config_write(addr, mode, len, value);
93  if (result != 0)
94  return -EINVAL;
95  return 0;
96 }
97 
98 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
99  int size, u32 *value)
100 {
101  return raw_pci_read(pci_domain_nr(bus), bus->number,
102  devfn, where, size, value);
103 }
104 
105 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
106  int size, u32 value)
107 {
108  return raw_pci_write(pci_domain_nr(bus), bus->number,
109  devfn, where, size, value);
110 }
111 
113  .read = pci_read,
114  .write = pci_write,
115 };
116 
117 /* Called by ACPI when it finds a new root bus. */
118 
119 static struct pci_controller * __devinit
121 {
122  struct pci_controller *controller;
123 
124  controller = kzalloc(sizeof(*controller), GFP_KERNEL);
125  if (!controller)
126  return NULL;
127 
128  controller->segment = seg;
129  controller->node = -1;
130  return controller;
131 }
132 
134  struct acpi_device *bridge;
137  char *name;
138 };
139 
140 static unsigned int
141 new_space (u64 phys_base, int sparse)
142 {
143  u64 mmio_base;
144  int i;
145 
146  if (phys_base == 0)
147  return 0; /* legacy I/O port space */
148 
149  mmio_base = (u64) ioremap(phys_base, 0);
150  for (i = 0; i < num_io_spaces; i++)
151  if (io_space[i].mmio_base == mmio_base &&
152  io_space[i].sparse == sparse)
153  return i;
154 
155  if (num_io_spaces == MAX_IO_SPACES) {
156  printk(KERN_ERR "PCI: Too many IO port spaces "
157  "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
158  return ~0;
159  }
160 
161  i = num_io_spaces++;
163  io_space[i].sparse = sparse;
164 
165  return i;
166 }
167 
168 static u64 __devinit
169 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
170 {
171  struct resource *resource;
172  char *name;
173  unsigned long base, min, max, base_port;
174  unsigned int sparse = 0, space_nr, len;
175 
176  resource = kzalloc(sizeof(*resource), GFP_KERNEL);
177  if (!resource) {
178  printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
179  info->name);
180  goto out;
181  }
182 
183  len = strlen(info->name) + 32;
184  name = kzalloc(len, GFP_KERNEL);
185  if (!name) {
186  printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
187  info->name);
188  goto free_resource;
189  }
190 
191  min = addr->minimum;
192  max = min + addr->address_length - 1;
193  if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
194  sparse = 1;
195 
196  space_nr = new_space(addr->translation_offset, sparse);
197  if (space_nr == ~0)
198  goto free_name;
199 
200  base = __pa(io_space[space_nr].mmio_base);
201  base_port = IO_SPACE_BASE(space_nr);
202  snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
203  base_port + min, base_port + max);
204 
205  /*
206  * The SDM guarantees the legacy 0-64K space is sparse, but if the
207  * mapping is done by the processor (not the bridge), ACPI may not
208  * mark it as sparse.
209  */
210  if (space_nr == 0)
211  sparse = 1;
212 
213  resource->name = name;
214  resource->flags = IORESOURCE_MEM;
215  resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
216  resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
217  insert_resource(&iomem_resource, resource);
218 
219  return base_port;
220 
221 free_name:
222  kfree(name);
223 free_resource:
224  kfree(resource);
225 out:
226  return ~0;
227 }
228 
229 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
230  struct acpi_resource_address64 *addr)
231 {
233 
234  /*
235  * We're only interested in _CRS descriptors that are
236  * - address space descriptors for memory or I/O space
237  * - non-zero size
238  * - producers, i.e., the address space is routed downstream,
239  * not consumed by the bridge itself
240  */
241  status = acpi_resource_to_address64(resource, addr);
242  if (ACPI_SUCCESS(status) &&
243  (addr->resource_type == ACPI_MEMORY_RANGE ||
244  addr->resource_type == ACPI_IO_RANGE) &&
245  addr->address_length &&
246  addr->producer_consumer == ACPI_PRODUCER)
247  return AE_OK;
248 
249  return AE_ERROR;
250 }
251 
252 static acpi_status __devinit
253 count_window (struct acpi_resource *resource, void *data)
254 {
255  unsigned int *windows = (unsigned int *) data;
256  struct acpi_resource_address64 addr;
258 
259  status = resource_to_window(resource, &addr);
260  if (ACPI_SUCCESS(status))
261  (*windows)++;
262 
263  return AE_OK;
264 }
265 
266 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
267 {
268  struct pci_root_info *info = data;
269  struct pci_window *window;
270  struct acpi_resource_address64 addr;
272  unsigned long flags, offset = 0;
273  struct resource *root;
274 
275  /* Return AE_OK for non-window resources to keep scanning for more */
276  status = resource_to_window(res, &addr);
277  if (!ACPI_SUCCESS(status))
278  return AE_OK;
279 
280  if (addr.resource_type == ACPI_MEMORY_RANGE) {
281  flags = IORESOURCE_MEM;
282  root = &iomem_resource;
283  offset = addr.translation_offset;
284  } else if (addr.resource_type == ACPI_IO_RANGE) {
285  flags = IORESOURCE_IO;
286  root = &ioport_resource;
287  offset = add_io_space(info, &addr);
288  if (offset == ~0)
289  return AE_OK;
290  } else
291  return AE_OK;
292 
293  window = &info->controller->window[info->controller->windows++];
294  window->resource.name = info->name;
295  window->resource.flags = flags;
296  window->resource.start = addr.minimum + offset;
297  window->resource.end = window->resource.start + addr.address_length - 1;
298  window->offset = offset;
299 
300  if (insert_resource(root, &window->resource)) {
301  dev_err(&info->bridge->dev,
302  "can't allocate host bridge window %pR\n",
303  &window->resource);
304  } else {
305  if (offset)
306  dev_info(&info->bridge->dev, "host bridge window %pR "
307  "(PCI address [%#llx-%#llx])\n",
308  &window->resource,
309  window->resource.start - offset,
310  window->resource.end - offset);
311  else
312  dev_info(&info->bridge->dev,
313  "host bridge window %pR\n",
314  &window->resource);
315  }
316 
317  /* HP's firmware has a hack to work around a Windows bug.
318  * Ignore these tiny memory ranges */
319  if (!((window->resource.flags & IORESOURCE_MEM) &&
320  (window->resource.end - window->resource.start < 16)))
321  pci_add_resource_offset(&info->resources, &window->resource,
322  window->offset);
323 
324  return AE_OK;
325 }
326 
327 struct pci_bus * __devinit
328 pci_acpi_scan_root(struct acpi_pci_root *root)
329 {
330  struct acpi_device *device = root->device;
331  int domain = root->segment;
332  int bus = root->secondary.start;
333  struct pci_controller *controller;
334  unsigned int windows = 0;
335  struct pci_root_info info;
336  struct pci_bus *pbus;
337  char *name;
338  int pxm;
339 
340  controller = alloc_pci_controller(domain);
341  if (!controller)
342  goto out1;
343 
344  controller->acpi_handle = device->handle;
345 
346  pxm = acpi_get_pxm(controller->acpi_handle);
347 #ifdef CONFIG_NUMA
348  if (pxm >= 0)
349  controller->node = pxm_to_node(pxm);
350 #endif
351 
352  INIT_LIST_HEAD(&info.resources);
353  /* insert busn resource at first */
354  pci_add_resource(&info.resources, &root->secondary);
355  acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
356  &windows);
357  if (windows) {
358  controller->window =
359  kzalloc_node(sizeof(*controller->window) * windows,
360  GFP_KERNEL, controller->node);
361  if (!controller->window)
362  goto out2;
363 
364  name = kmalloc(16, GFP_KERNEL);
365  if (!name)
366  goto out3;
367 
368  sprintf(name, "PCI Bus %04x:%02x", domain, bus);
369  info.bridge = device;
370  info.controller = controller;
371  info.name = name;
372  acpi_walk_resources(device->handle, METHOD_NAME__CRS,
373  add_window, &info);
374  }
375  /*
376  * See arch/x86/pci/acpi.c.
377  * The desired pci bus might already be scanned in a quirk. We
378  * should handle the case here, but it appears that IA64 hasn't
379  * such quirk. So we just ignore the case now.
380  */
381  pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
382  &info.resources);
383  if (!pbus) {
385  return NULL;
386  }
387 
388  pci_scan_child_bus(pbus);
389  return pbus;
390 
391 out3:
392  kfree(controller->window);
393 out2:
394  kfree(controller);
395 out1:
396  return NULL;
397 }
398 
399 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
400 {
401  unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
402  struct resource *devr = &dev->resource[idx], *busr;
403 
404  if (!dev->bus)
405  return 0;
406 
407  pci_bus_for_each_resource(dev->bus, busr, i) {
408  if (!busr || ((busr->flags ^ devr->flags) & type_mask))
409  continue;
410  if ((devr->start) && (devr->start >= busr->start) &&
411  (devr->end <= busr->end))
412  return 1;
413  }
414  return 0;
415 }
416 
417 static void __devinit
418 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
419 {
420  int i;
421 
422  for (i = start; i < limit; i++) {
423  if (!dev->resource[i].flags)
424  continue;
425  if ((is_valid_resource(dev, i)))
426  pci_claim_resource(dev, i);
427  }
428 }
429 
431 {
433 }
435 
436 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
437 {
439 }
440 
441 /*
442  * Called after each bus is probed, but before its children are examined.
443  */
444 void __devinit
446 {
447  struct pci_dev *dev;
448 
449  if (b->self) {
451  pcibios_fixup_bridge_resources(b->self);
452  }
456 }
457 
458 void pcibios_set_master (struct pci_dev *dev)
459 {
460  /* No special bus mastering setup handling */
461 }
462 
463 int
465 {
466  int ret;
467 
468  ret = pci_enable_resources(dev, mask);
469  if (ret < 0)
470  return ret;
471 
472  if (!dev->msi_enabled)
473  return acpi_pci_irq_enable(dev);
474  return 0;
475 }
476 
477 void
479 {
480  BUG_ON(atomic_read(&dev->enable_cnt));
481  if (!dev->msi_enabled)
483 }
484 
486 pcibios_align_resource (void *data, const struct resource *res,
488 {
489  return res->start;
490 }
491 
492 int
493 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
494  enum pci_mmap_state mmap_state, int write_combine)
495 {
496  unsigned long size = vma->vm_end - vma->vm_start;
497  pgprot_t prot;
498 
499  /*
500  * I/O space cannot be accessed via normal processor loads and
501  * stores on this platform.
502  */
503  if (mmap_state == pci_mmap_io)
504  /*
505  * XXX we could relax this for I/O spaces for which ACPI
506  * indicates that the space is 1-to-1 mapped. But at the
507  * moment, we don't support multiple PCI address spaces and
508  * the legacy I/O space is not 1-to-1 mapped, so this is moot.
509  */
510  return -EINVAL;
511 
512  if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
513  return -EINVAL;
514 
515  prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
516  vma->vm_page_prot);
517 
518  /*
519  * If the user requested WC, the kernel uses UC or WC for this region,
520  * and the chipset supports WC, we can use WC. Otherwise, we have to
521  * use the same attribute the kernel uses.
522  */
523  if (write_combine &&
524  ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
525  (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
526  efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
528  else
529  vma->vm_page_prot = prot;
530 
531  if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
532  vma->vm_end - vma->vm_start, vma->vm_page_prot))
533  return -EAGAIN;
534 
535  return 0;
536 }
537 
551 {
552  return (char *)__IA64_UNCACHED_OFFSET;
553 }
554 
563 int
565  enum pci_mmap_state mmap_state)
566 {
567  unsigned long size = vma->vm_end - vma->vm_start;
568  pgprot_t prot;
569  char *addr;
570 
571  /* We only support mmap'ing of legacy memory space */
572  if (mmap_state != pci_mmap_mem)
573  return -ENOSYS;
574 
575  /*
576  * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
577  * for more details.
578  */
579  if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
580  return -EINVAL;
581  prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
582  vma->vm_page_prot);
583 
584  addr = pci_get_legacy_mem(bus);
585  if (IS_ERR(addr))
586  return PTR_ERR(addr);
587 
588  vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
589  vma->vm_page_prot = prot;
590 
591  if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
592  size, vma->vm_page_prot))
593  return -EAGAIN;
594 
595  return 0;
596 }
597 
611 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
612 {
613  int ret = size;
614 
615  switch (size) {
616  case 1:
617  *val = inb(port);
618  break;
619  case 2:
620  *val = inw(port);
621  break;
622  case 4:
623  *val = inl(port);
624  break;
625  default:
626  ret = -EINVAL;
627  break;
628  }
629 
630  return ret;
631 }
632 
642 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
643 {
644  int ret = size;
645 
646  switch (size) {
647  case 1:
648  outb(val, port);
649  break;
650  case 2:
651  outw(val, port);
652  break;
653  case 4:
654  outl(val, port);
655  break;
656  default:
657  ret = -EINVAL;
658  break;
659  }
660 
661  return ret;
662 }
663 
672 static void __init set_pci_dfl_cacheline_size(void)
673 {
674  unsigned long levels, unique_caches;
675  long status;
677 
678  status = ia64_pal_cache_summary(&levels, &unique_caches);
679  if (status != 0) {
680  printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
681  "(status=%ld)\n", __func__, status);
682  return;
683  }
684 
685  status = ia64_pal_cache_config_info(levels - 1,
686  /* cache_type (data_or_unified)= */ 2, &cci);
687  if (status != 0) {
688  printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
689  "(status=%ld)\n", __func__, status);
690  return;
691  }
692  pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
693 }
694 
696 {
697  u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
698  u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
699  u64 mask;
700 
701  if (!high_totalram) {
702  /* convert to mask just covering totalram */
703  low_totalram = (1 << (fls(low_totalram) - 1));
704  low_totalram += low_totalram - 1;
705  mask = low_totalram;
706  } else {
707  high_totalram = (1 << (fls(high_totalram) - 1));
708  high_totalram += high_totalram - 1;
709  mask = (((u64)high_totalram) << 32) + 0xffffffff;
710  }
711  return mask;
712 }
713 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
714 
716 {
717  return platform_dma_get_required_mask(dev);
718 }
720 
721 static int __init pcibios_init(void)
722 {
723  set_pci_dfl_cacheline_size();
724  return 0;
725 }
726 
727 subsys_initcall(pcibios_init);