Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
irq.c
Go to the documentation of this file.
1 /*
2  * Platform dependent support for SGI SN
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License. See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (c) 2000-2008 Silicon Graphics, Inc. All Rights Reserved.
9  */
10 
11 #include <linux/irq.h>
12 #include <linux/spinlock.h>
13 #include <linux/init.h>
14 #include <linux/rculist.h>
15 #include <linux/slab.h>
16 #include <asm/sn/addrs.h>
17 #include <asm/sn/arch.h>
18 #include <asm/sn/intr.h>
19 #include <asm/sn/pcibr_provider.h>
21 #include <asm/sn/pcidev.h>
22 #include <asm/sn/shub_mmr.h>
23 #include <asm/sn/sn_sal.h>
24 #include <asm/sn/sn_feature_sets.h>
25 
26 static void register_intr_pda(struct sn_irq_info *sn_irq_info);
27 static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
28 
29 extern int sn_ioif_inited;
31 static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */
32 
33 u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
34  struct sn_irq_info *sn_irq_info,
35  int req_irq, nasid_t req_nasid,
36  int req_slice)
37 {
38  struct ia64_sal_retval ret_stuff;
39  ret_stuff.status = 0;
40  ret_stuff.v0 = 0;
41 
43  (u64) SAL_INTR_ALLOC, (u64) local_nasid,
44  (u64) local_widget, __pa(sn_irq_info), (u64) req_irq,
45  (u64) req_nasid, (u64) req_slice);
46 
47  return ret_stuff.status;
48 }
49 
50 void sn_intr_free(nasid_t local_nasid, int local_widget,
51  struct sn_irq_info *sn_irq_info)
52 {
53  struct ia64_sal_retval ret_stuff;
54  ret_stuff.status = 0;
55  ret_stuff.v0 = 0;
56 
58  (u64) SAL_INTR_FREE, (u64) local_nasid,
59  (u64) local_widget, (u64) sn_irq_info->irq_irq,
60  (u64) sn_irq_info->irq_cookie, 0, 0);
61 }
62 
63 u64 sn_intr_redirect(nasid_t local_nasid, int local_widget,
64  struct sn_irq_info *sn_irq_info,
65  nasid_t req_nasid, int req_slice)
66 {
67  struct ia64_sal_retval ret_stuff;
68  ret_stuff.status = 0;
69  ret_stuff.v0 = 0;
70 
72  (u64) SAL_INTR_REDIRECT, (u64) local_nasid,
73  (u64) local_widget, __pa(sn_irq_info),
74  (u64) req_nasid, (u64) req_slice, 0);
75 
76  return ret_stuff.status;
77 }
78 
79 static unsigned int sn_startup_irq(struct irq_data *data)
80 {
81  return 0;
82 }
83 
84 static void sn_shutdown_irq(struct irq_data *data)
85 {
86 }
87 
88 extern void ia64_mca_register_cpev(int);
89 
90 static void sn_disable_irq(struct irq_data *data)
91 {
92  if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
94 }
95 
96 static void sn_enable_irq(struct irq_data *data)
97 {
98  if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
100 }
101 
102 static void sn_ack_irq(struct irq_data *data)
103 {
104  u64 event_occurred, mask;
105  unsigned int irq = data->irq & 0xff;
106 
107  event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
108  mask = event_occurred & SH_ALL_INT_MASK;
110  __set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
111 
112  irq_move_irq(data);
113 }
114 
116  nasid_t nasid, int slice)
117 {
118  int vector;
119  int cpuid;
120 #ifdef CONFIG_SMP
121  int cpuphys;
122 #endif
123  int64_t bridge;
124  int local_widget, status;
125  nasid_t local_nasid;
126  struct sn_irq_info *new_irq_info;
127  struct sn_pcibus_provider *pci_provider;
128 
129  bridge = (u64) sn_irq_info->irq_bridge;
130  if (!bridge) {
131  return NULL; /* irq is not a device interrupt */
132  }
133 
134  local_nasid = NASID_GET(bridge);
135 
136  if (local_nasid & 1)
137  local_widget = TIO_SWIN_WIDGETNUM(bridge);
138  else
139  local_widget = SWIN_WIDGETNUM(bridge);
140  vector = sn_irq_info->irq_irq;
141 
142  /* Make use of SAL_INTR_REDIRECT if PROM supports it */
143  status = sn_intr_redirect(local_nasid, local_widget, sn_irq_info, nasid, slice);
144  if (!status) {
145  new_irq_info = sn_irq_info;
146  goto finish_up;
147  }
148 
149  /*
150  * PROM does not support SAL_INTR_REDIRECT, or it failed.
151  * Revert to old method.
152  */
153  new_irq_info = kmemdup(sn_irq_info, sizeof(struct sn_irq_info),
154  GFP_ATOMIC);
155  if (new_irq_info == NULL)
156  return NULL;
157 
158  /* Free the old PROM new_irq_info structure */
159  sn_intr_free(local_nasid, local_widget, new_irq_info);
160  unregister_intr_pda(new_irq_info);
161 
162  /* allocate a new PROM new_irq_info struct */
163  status = sn_intr_alloc(local_nasid, local_widget,
164  new_irq_info, vector,
165  nasid, slice);
166 
167  /* SAL call failed */
168  if (status) {
169  kfree(new_irq_info);
170  return NULL;
171  }
172 
173  register_intr_pda(new_irq_info);
174  spin_lock(&sn_irq_info_lock);
175  list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
176  spin_unlock(&sn_irq_info_lock);
177  kfree_rcu(sn_irq_info, rcu);
178 
179 
180 finish_up:
181  /* Update kernels new_irq_info with new target info */
182  cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid,
183  new_irq_info->irq_slice);
184  new_irq_info->irq_cpuid = cpuid;
185 
186  pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
187 
188  /*
189  * If this represents a line interrupt, target it. If it's
190  * an msi (irq_int_bit < 0), it's already targeted.
191  */
192  if (new_irq_info->irq_int_bit >= 0 &&
193  pci_provider && pci_provider->target_interrupt)
194  (pci_provider->target_interrupt)(new_irq_info);
195 
196 #ifdef CONFIG_SMP
197  cpuphys = cpu_physical_id(cpuid);
198  set_irq_affinity_info((vector & 0xff), cpuphys, 0);
199 #endif
200 
201  return new_irq_info;
202 }
203 
204 static int sn_set_affinity_irq(struct irq_data *data,
205  const struct cpumask *mask, bool force)
206 {
207  struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
208  unsigned int irq = data->irq;
209  nasid_t nasid;
210  int slice;
211 
212  nasid = cpuid_to_nasid(cpumask_first(mask));
213  slice = cpuid_to_slice(cpumask_first(mask));
214 
215  list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
216  sn_irq_lh[irq], list)
217  (void)sn_retarget_vector(sn_irq_info, nasid, slice);
218 
219  return 0;
220 }
221 
222 #ifdef CONFIG_SMP
223 void sn_set_err_irq_affinity(unsigned int irq)
224 {
225  /*
226  * On systems which support CPU disabling (SHub2), all error interrupts
227  * are targeted at the boot CPU.
228  */
231 }
232 #else
233 void sn_set_err_irq_affinity(unsigned int irq) { }
234 #endif
235 
236 static void
237 sn_mask_irq(struct irq_data *data)
238 {
239 }
240 
241 static void
242 sn_unmask_irq(struct irq_data *data)
243 {
244 }
245 
247  .name = "SN hub",
248  .irq_startup = sn_startup_irq,
249  .irq_shutdown = sn_shutdown_irq,
250  .irq_enable = sn_enable_irq,
251  .irq_disable = sn_disable_irq,
252  .irq_ack = sn_ack_irq,
253  .irq_mask = sn_mask_irq,
254  .irq_unmask = sn_unmask_irq,
255  .irq_set_affinity = sn_set_affinity_irq
256 };
257 
259 {
260  if (irq >= IA64_NUM_VECTORS)
261  return 0;
262  return (ia64_vector)irq;
263 }
264 
266 {
267  return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
268 }
269 
270 void sn_irq_init(void)
271 {
272  int i;
273 
276 
277  for (i = 0; i < NR_IRQS; i++) {
278  if (irq_get_chip(i) == &no_irq_chip)
279  irq_set_chip(i, &irq_type_sn);
280  }
281 }
282 
283 static void register_intr_pda(struct sn_irq_info *sn_irq_info)
284 {
285  int irq = sn_irq_info->irq_irq;
286  int cpu = sn_irq_info->irq_cpuid;
287 
288  if (pdacpu(cpu)->sn_last_irq < irq) {
289  pdacpu(cpu)->sn_last_irq = irq;
290  }
291 
292  if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq)
293  pdacpu(cpu)->sn_first_irq = irq;
294 }
295 
296 static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
297 {
298  int irq = sn_irq_info->irq_irq;
299  int cpu = sn_irq_info->irq_cpuid;
300  struct sn_irq_info *tmp_irq_info;
301  int i, foundmatch;
302 
303  rcu_read_lock();
304  if (pdacpu(cpu)->sn_last_irq == irq) {
305  foundmatch = 0;
306  for (i = pdacpu(cpu)->sn_last_irq - 1;
307  i && !foundmatch; i--) {
308  list_for_each_entry_rcu(tmp_irq_info,
309  sn_irq_lh[i],
310  list) {
311  if (tmp_irq_info->irq_cpuid == cpu) {
312  foundmatch = 1;
313  break;
314  }
315  }
316  }
317  pdacpu(cpu)->sn_last_irq = i;
318  }
319 
320  if (pdacpu(cpu)->sn_first_irq == irq) {
321  foundmatch = 0;
322  for (i = pdacpu(cpu)->sn_first_irq + 1;
323  i < NR_IRQS && !foundmatch; i++) {
324  list_for_each_entry_rcu(tmp_irq_info,
325  sn_irq_lh[i],
326  list) {
327  if (tmp_irq_info->irq_cpuid == cpu) {
328  foundmatch = 1;
329  break;
330  }
331  }
332  }
333  pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
334  }
335  rcu_read_unlock();
336 }
337 
338 void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
339 {
340  nasid_t nasid = sn_irq_info->irq_nasid;
341  int slice = sn_irq_info->irq_slice;
342  int cpu = nasid_slice_to_cpuid(nasid, slice);
343 #ifdef CONFIG_SMP
344  int cpuphys;
345 #endif
346 
347  pci_dev_get(pci_dev);
348  sn_irq_info->irq_cpuid = cpu;
349  sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
350 
351  /* link it into the sn_irq[irq] list */
352  spin_lock(&sn_irq_info_lock);
353  list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
354  reserve_irq_vector(sn_irq_info->irq_irq);
355  if (sn_irq_info->irq_int_bit != -1)
356  irq_set_handler(sn_irq_info->irq_irq, handle_level_irq);
357  spin_unlock(&sn_irq_info_lock);
358 
359  register_intr_pda(sn_irq_info);
360 #ifdef CONFIG_SMP
361  cpuphys = cpu_physical_id(cpu);
362  set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0);
363  /*
364  * Affinity was set by the PROM, prevent it from
365  * being reset by the request_irq() path.
366  */
367  irqd_mark_affinity_was_set(irq_get_irq_data(sn_irq_info->irq_irq));
368 #endif
369 }
370 
372 {
373  struct sn_irq_info *sn_irq_info;
374 
375  /* Only cleanup IRQ stuff if this device has a host bus context */
376  if (!SN_PCIDEV_BUSSOFT(pci_dev))
377  return;
378 
379  sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
380  if (!sn_irq_info)
381  return;
382  if (!sn_irq_info->irq_irq) {
383  kfree(sn_irq_info);
384  return;
385  }
386 
387  unregister_intr_pda(sn_irq_info);
388  spin_lock(&sn_irq_info_lock);
389  list_del_rcu(&sn_irq_info->list);
390  spin_unlock(&sn_irq_info_lock);
391  if (list_empty(sn_irq_lh[sn_irq_info->irq_irq]))
392  free_irq_vector(sn_irq_info->irq_irq);
393  kfree_rcu(sn_irq_info, rcu);
394  pci_dev_put(pci_dev);
395 
396 }
397 
398 static inline void
399 sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
400 {
401  struct sn_pcibus_provider *pci_provider;
402 
403  pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
404 
405  /* Don't force an interrupt if the irq has been disabled */
406  if (!irqd_irq_disabled(irq_get_irq_data(sn_irq_info->irq_irq)) &&
407  pci_provider && pci_provider->force_interrupt)
408  (*pci_provider->force_interrupt)(sn_irq_info);
409 }
410 
411 /*
412  * Check for lost interrupts. If the PIC int_status reg. says that
413  * an interrupt has been sent, but not handled, and the interrupt
414  * is not pending in either the cpu irr regs or in the soft irr regs,
415  * and the interrupt is not in service, then the interrupt may have
416  * been lost. Force an interrupt on that pin. It is possible that
417  * the interrupt is in flight, so we may generate a spurious interrupt,
418  * but we should never miss a real lost interrupt.
419  */
420 static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
421 {
422  u64 regval;
423  struct pcidev_info *pcidev_info;
424  struct pcibus_info *pcibus_info;
425 
426  /*
427  * Bridge types attached to TIO (anything but PIC) do not need this WAR
428  * since they do not target Shub II interrupt registers. If that
429  * ever changes, this check needs to accommodate.
430  */
431  if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
432  return;
433 
434  pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
435  if (!pcidev_info)
436  return;
437 
438  pcibus_info =
439  (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
440  pdi_pcibus_info;
441  regval = pcireg_intr_status_get(pcibus_info);
442 
443  if (!ia64_get_irr(irq_to_vector(irq))) {
444  if (!test_bit(irq, pda->sn_in_service_ivecs)) {
445  regval &= 0xff;
446  if (sn_irq_info->irq_int_bit & regval &
447  sn_irq_info->irq_last_intr) {
448  regval &= ~(sn_irq_info->irq_int_bit & regval);
449  sn_call_force_intr_provider(sn_irq_info);
450  }
451  }
452  }
453  sn_irq_info->irq_last_intr = regval;
454 }
455 
457 {
458  struct sn_irq_info *sn_irq_info;
459  int i;
460 
461  if (!sn_ioif_inited || pda->sn_first_irq == 0)
462  return;
463 
464  rcu_read_lock();
465  for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
466  list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
467  sn_check_intr(i, sn_irq_info);
468  }
469  }
470  rcu_read_unlock();
471 }
472 
474 {
475  int i;
476 
477  sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
478  if (!sn_irq_lh)
479  panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
480 
481  for (i = 0; i < NR_IRQS; i++) {
482  sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
483  if (!sn_irq_lh[i])
484  panic("SN PCI INIT: Failed IRQ memory allocation\n");
485 
486  INIT_LIST_HEAD(sn_irq_lh[i]);
487  }
488 }