Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
init.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 1995 Linus Torvalds
3  * Copyright 2010 Tilera Corporation. All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation, version 2.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  * NON INFRINGEMENT. See the GNU General Public License for
13  * more details.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/hugetlb.h>
27 #include <linux/swap.h>
28 #include <linux/smp.h>
29 #include <linux/init.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/poison.h>
33 #include <linux/bootmem.h>
34 #include <linux/slab.h>
35 #include <linux/proc_fs.h>
36 #include <linux/efi.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/processor.h>
41 #include <asm/pgtable.h>
42 #include <asm/pgalloc.h>
43 #include <asm/dma.h>
44 #include <asm/fixmap.h>
45 #include <asm/tlb.h>
46 #include <asm/tlbflush.h>
47 #include <asm/sections.h>
48 #include <asm/setup.h>
49 #include <asm/homecache.h>
50 #include <hv/hypervisor.h>
51 #include <arch/chip.h>
52 
53 #include "migrate.h"
54 
55 #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
56 
57 #ifndef __tilegx__
58 unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
60 #endif
61 
62 /* Create an L2 page table */
63 static pte_t * __init alloc_pte(void)
64 {
66 }
67 
68 /*
69  * L2 page tables per controller. We allocate these all at once from
70  * the bootmem allocator and store them here. This saves on kernel L2
71  * page table memory, compared to allocating a full 64K page per L2
72  * page table, and also means that in cases where we use huge pages,
73  * we are guaranteed to later be able to shatter those huge pages and
74  * switch to using these page tables instead, without requiring
75  * further allocation. Each l2_ptes[] entry points to the first page
76  * table for the first hugepage-size piece of memory on the
77  * controller; other page tables are just indexed directly, i.e. the
78  * L2 page tables are contiguous in memory for each controller.
79  */
80 static pte_t *l2_ptes[MAX_NUMNODES];
81 static int num_l2_ptes[MAX_NUMNODES];
82 
83 static void init_prealloc_ptes(int node, int pages)
84 {
85  BUG_ON(pages & (PTRS_PER_PTE - 1));
86  if (pages) {
87  num_l2_ptes[node] = pages;
88  l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
90  }
91 }
92 
93 pte_t *get_prealloc_pte(unsigned long pfn)
94 {
95  int node = pfn_to_nid(pfn);
96  pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
97  BUG_ON(node >= MAX_NUMNODES);
98  BUG_ON(pfn >= num_l2_ptes[node]);
99  return &l2_ptes[node][pfn];
100 }
101 
102 /*
103  * What caching do we expect pages from the heap to have when
104  * they are allocated during bootup? (Once we've installed the
105  * "real" swapper_pg_dir.)
106  */
107 static int initial_heap_home(void)
108 {
109 #if CHIP_HAS_CBOX_HOME_MAP()
110  if (hash_default)
111  return PAGE_HOME_HASH;
112 #endif
113  return smp_processor_id();
114 }
115 
116 /*
117  * Place a pointer to an L2 page table in a middle page
118  * directory entry.
119  */
120 static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
121 {
122  phys_addr_t pa = __pa(page_table);
123  unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
124  pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
125  BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
126  pteval = pte_set_home(pteval, initial_heap_home());
127  *(pte_t *)pmd = pteval;
128  if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
129  BUG();
130 }
131 
132 #ifdef __tilegx__
133 
134 static inline pmd_t *alloc_pmd(void)
135 {
136  return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
137 }
138 
139 static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
140 {
141  assign_pte((pmd_t *)pud, (pte_t *)pmd);
142 }
143 
144 #endif /* __tilegx__ */
145 
146 /* Replace the given pmd with a full PTE table. */
148 {
149  pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
150  assign_pte(pmd, pte);
151 }
152 
153 #ifdef __tilegx__
154 static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
155 {
156  pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
157  if (pud_none(*pud))
158  assign_pmd(pud, alloc_pmd());
159  return pmd_offset(pud, va);
160 }
161 #else
162 static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
163 {
164  return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
165 }
166 #endif
167 
168 /*
169  * This function initializes a certain range of kernel virtual memory
170  * with new bootmem page tables, everywhere page tables are missing in
171  * the given range.
172  */
173 
174 /*
175  * NOTE: The pagetables are allocated contiguous on the physical space
176  * so we can cache the place of the first one and move around without
177  * checking the pgd every time.
178  */
179 static void __init page_table_range_init(unsigned long start,
180  unsigned long end, pgd_t *pgd)
181 {
182  unsigned long vaddr;
183  start = round_down(start, PMD_SIZE);
184  end = round_up(end, PMD_SIZE);
185  for (vaddr = start; vaddr < end; vaddr += PMD_SIZE) {
186  pmd_t *pmd = get_pmd(pgd, vaddr);
187  if (pmd_none(*pmd))
188  assign_pte(pmd, alloc_pte());
189  }
190 }
191 
192 
193 #if CHIP_HAS_CBOX_HOME_MAP()
194 
195 static int __initdata ktext_hash = 1; /* .text pages */
196 static int __initdata kdata_hash = 1; /* .data and .bss pages */
197 int __write_once hash_default = 1; /* kernel allocator pages */
198 EXPORT_SYMBOL(hash_default);
199 int __write_once kstack_hash = 1; /* if no homecaching, use h4h */
200 #endif /* CHIP_HAS_CBOX_HOME_MAP */
201 
202 /*
203  * CPUs to use to for striping the pages of kernel data. If hash-for-home
204  * is available, this is only relevant if kcache_hash sets up the
205  * .data and .bss to be page-homed, and we don't want the default mode
206  * of using the full set of kernel cpus for the striping.
207  */
208 static __initdata struct cpumask kdata_mask;
209 static __initdata int kdata_arg_seen;
210 
211 int __write_once kdata_huge; /* if no homecaching, small pages */
212 
213 
214 /* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
215 static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
216 {
217  prot = pte_set_home(prot, home);
218 #if CHIP_HAS_CBOX_HOME_MAP()
219  if (home == PAGE_HOME_IMMUTABLE) {
220  if (ktext_hash)
221  prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
222  else
223  prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
224  }
225 #endif
226  return prot;
227 }
228 
229 /*
230  * For a given kernel data VA, how should it be cached?
231  * We return the complete pgprot_t with caching bits set.
232  */
233 static pgprot_t __init init_pgprot(ulong address)
234 {
235  int cpu;
236  unsigned long page;
237  enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
238 
239 #if CHIP_HAS_CBOX_HOME_MAP()
240  /* For kdata=huge, everything is just hash-for-home. */
241  if (kdata_huge)
242  return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
243 #endif
244 
245  /* We map the aliased pages of permanent text inaccessible. */
246  if (address < (ulong) _sinittext - CODE_DELTA)
247  return PAGE_NONE;
248 
249  /*
250  * We map read-only data non-coherent for performance. We could
251  * use neighborhood caching on TILE64, but it's not clear it's a win.
252  */
253  if ((address >= (ulong) __start_rodata &&
254  address < (ulong) __end_rodata) ||
255  address == (ulong) empty_zero_page) {
256  return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
257  }
258 
259 #ifndef __tilegx__
260 #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
261  /* Force the atomic_locks[] array page to be hash-for-home. */
262  if (address == (ulong) atomic_locks)
263  return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
264 #endif
265 #endif
266 
267  /*
268  * Everything else that isn't data or bss is heap, so mark it
269  * with the initial heap home (hash-for-home, or this cpu). This
270  * includes any addresses after the loaded image and any address before
271  * _einitdata, since we already captured the case of text before
272  * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
273  *
274  * All the LOWMEM pages that we mark this way will get their
275  * struct page homecache properly marked later, in set_page_homes().
276  * The HIGHMEM pages we leave with a default zero for their
277  * homes, but with a zero free_time we don't have to actually
278  * do a flush action the first time we use them, either.
279  */
280  if (address >= (ulong) _end || address < (ulong) _einitdata)
281  return construct_pgprot(PAGE_KERNEL, initial_heap_home());
282 
283 #if CHIP_HAS_CBOX_HOME_MAP()
284  /* Use hash-for-home if requested for data/bss. */
285  if (kdata_hash)
286  return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
287 #endif
288 
289  /*
290  * Make the w1data homed like heap to start with, to avoid
291  * making it part of the page-striped data area when we're just
292  * going to convert it to read-only soon anyway.
293  */
294  if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
295  return construct_pgprot(PAGE_KERNEL, initial_heap_home());
296 
297  /*
298  * Otherwise we just hand out consecutive cpus. To avoid
299  * requiring this function to hold state, we just walk forward from
300  * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
301  * the requested address, while walking cpu home around kdata_mask.
302  * This is typically no more than a dozen or so iterations.
303  */
304  page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
306  cpu = cpumask_first(&kdata_mask);
307  for (; page < address; page += PAGE_SIZE) {
308  if (page >= (ulong)&init_thread_union &&
309  page < (ulong)&init_thread_union + THREAD_SIZE)
310  continue;
311  if (page == (ulong)empty_zero_page)
312  continue;
313 #ifndef __tilegx__
314 #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
315  if (page == (ulong)atomic_locks)
316  continue;
317 #endif
318 #endif
319  cpu = cpumask_next(cpu, &kdata_mask);
320  if (cpu == NR_CPUS)
321  cpu = cpumask_first(&kdata_mask);
322  }
323  return construct_pgprot(PAGE_KERNEL, cpu);
324 }
325 
326 /*
327  * This function sets up how we cache the kernel text. If we have
328  * hash-for-home support, normally that is used instead (see the
329  * kcache_hash boot flag for more information). But if we end up
330  * using a page-based caching technique, this option sets up the
331  * details of that. In addition, the "ktext=nocache" option may
332  * always be used to disable local caching of text pages, if desired.
333  */
334 
335 static int __initdata ktext_arg_seen;
336 static int __initdata ktext_small;
337 static int __initdata ktext_local;
338 static int __initdata ktext_all;
339 static int __initdata ktext_nondataplane;
340 static int __initdata ktext_nocache;
341 static struct cpumask __initdata ktext_mask;
342 
343 static int __init setup_ktext(char *str)
344 {
345  if (str == NULL)
346  return -EINVAL;
347 
348  /* If you have a leading "nocache", turn off ktext caching */
349  if (strncmp(str, "nocache", 7) == 0) {
350  ktext_nocache = 1;
351  pr_info("ktext: disabling local caching of kernel text\n");
352  str += 7;
353  if (*str == ',')
354  ++str;
355  if (*str == '\0')
356  return 0;
357  }
358 
359  ktext_arg_seen = 1;
360 
361  /* Default setting on Tile64: use a huge page */
362  if (strcmp(str, "huge") == 0)
363  pr_info("ktext: using one huge locally cached page\n");
364 
365  /* Pay TLB cost but get no cache benefit: cache small pages locally */
366  else if (strcmp(str, "local") == 0) {
367  ktext_small = 1;
368  ktext_local = 1;
369  pr_info("ktext: using small pages with local caching\n");
370  }
371 
372  /* Neighborhood cache ktext pages on all cpus. */
373  else if (strcmp(str, "all") == 0) {
374  ktext_small = 1;
375  ktext_all = 1;
376  pr_info("ktext: using maximal caching neighborhood\n");
377  }
378 
379 
380  /* Neighborhood ktext pages on specified mask */
381  else if (cpulist_parse(str, &ktext_mask) == 0) {
382  char buf[NR_CPUS * 5];
383  cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
384  if (cpumask_weight(&ktext_mask) > 1) {
385  ktext_small = 1;
386  pr_info("ktext: using caching neighborhood %s "
387  "with small pages\n", buf);
388  } else {
389  pr_info("ktext: caching on cpu %s with one huge page\n",
390  buf);
391  }
392  }
393 
394  else if (*str)
395  return -EINVAL;
396 
397  return 0;
398 }
399 
400 early_param("ktext", setup_ktext);
401 
402 
403 static inline pgprot_t ktext_set_nocache(pgprot_t prot)
404 {
405  if (!ktext_nocache)
406  prot = hv_pte_set_nc(prot);
407 #if CHIP_HAS_NC_AND_NOALLOC_BITS()
408  else
409  prot = hv_pte_set_no_alloc_l2(prot);
410 #endif
411  return prot;
412 }
413 
414 /* Temporary page table we use for staging. */
415 static pgd_t pgtables[PTRS_PER_PGD]
417 
418 /*
419  * This maps the physical memory to kernel virtual address space, a total
420  * of max_low_pfn pages, by creating page tables starting from address
421  * PAGE_OFFSET.
422  *
423  * This routine transitions us from using a set of compiled-in large
424  * pages to using some more precise caching, including removing access
425  * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
426  * marking read-only data as locally cacheable, striping the remaining
427  * .data and .bss across all the available tiles, and removing access
428  * to pages above the top of RAM (thus ensuring a page fault from a bad
429  * virtual address rather than a hypervisor shoot down for accessing
430  * memory outside the assigned limits).
431  */
432 static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
433 {
434  unsigned long long irqmask;
435  unsigned long address, pfn;
436  pmd_t *pmd;
437  pte_t *pte;
438  int pte_ofs;
439  const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
440  struct cpumask kstripe_mask;
441  int rc, i;
442 
443 #if CHIP_HAS_CBOX_HOME_MAP()
444  if (ktext_arg_seen && ktext_hash) {
445  pr_warning("warning: \"ktext\" boot argument ignored"
446  " if \"kcache_hash\" sets up text hash-for-home\n");
447  ktext_small = 0;
448  }
449 
450  if (kdata_arg_seen && kdata_hash) {
451  pr_warning("warning: \"kdata\" boot argument ignored"
452  " if \"kcache_hash\" sets up data hash-for-home\n");
453  }
454 
455  if (kdata_huge && !hash_default) {
456  pr_warning("warning: disabling \"kdata=huge\"; requires"
457  " kcache_hash=all or =allbutstack\n");
458  kdata_huge = 0;
459  }
460 #endif
461 
462  /*
463  * Set up a mask for cpus to use for kernel striping.
464  * This is normally all cpus, but minus dataplane cpus if any.
465  * If the dataplane covers the whole chip, we stripe over
466  * the whole chip too.
467  */
468  cpumask_copy(&kstripe_mask, cpu_possible_mask);
469  if (!kdata_arg_seen)
470  kdata_mask = kstripe_mask;
471 
472  /* Allocate and fill in L2 page tables */
473  for (i = 0; i < MAX_NUMNODES; ++i) {
474 #ifdef CONFIG_HIGHMEM
475  unsigned long end_pfn = node_lowmem_end_pfn[i];
476 #else
477  unsigned long end_pfn = node_end_pfn[i];
478 #endif
479  unsigned long end_huge_pfn = 0;
480 
481  /* Pre-shatter the last huge page to allow per-cpu pages. */
482  if (kdata_huge)
483  end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
484 
485  pfn = node_start_pfn[i];
486 
487  /* Allocate enough memory to hold L2 page tables for node. */
488  init_prealloc_ptes(i, end_pfn - pfn);
489 
490  address = (unsigned long) pfn_to_kaddr(pfn);
491  while (pfn < end_pfn) {
492  BUG_ON(address & (HPAGE_SIZE-1));
493  pmd = get_pmd(pgtables, address);
494  pte = get_prealloc_pte(pfn);
495  if (pfn < end_huge_pfn) {
496  pgprot_t prot = init_pgprot(address);
497  *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
498  for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
499  pfn++, pte_ofs++, address += PAGE_SIZE)
500  pte[pte_ofs] = pfn_pte(pfn, prot);
501  } else {
502  if (kdata_huge)
503  printk(KERN_DEBUG "pre-shattered huge"
504  " page at %#lx\n", address);
505  for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
506  pfn++, pte_ofs++, address += PAGE_SIZE) {
507  pgprot_t prot = init_pgprot(address);
508  pte[pte_ofs] = pfn_pte(pfn, prot);
509  }
510  assign_pte(pmd, pte);
511  }
512  }
513  }
514 
515  /*
516  * Set or check ktext_map now that we have cpu_possible_mask
517  * and kstripe_mask to work with.
518  */
519  if (ktext_all)
520  cpumask_copy(&ktext_mask, cpu_possible_mask);
521  else if (ktext_nondataplane)
522  ktext_mask = kstripe_mask;
523  else if (!cpumask_empty(&ktext_mask)) {
524  /* Sanity-check any mask that was requested */
525  struct cpumask bad;
526  cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
527  cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
528  if (!cpumask_empty(&bad)) {
529  char buf[NR_CPUS * 5];
530  cpulist_scnprintf(buf, sizeof(buf), &bad);
531  pr_info("ktext: not using unavailable cpus %s\n", buf);
532  }
533  if (cpumask_empty(&ktext_mask)) {
534  pr_warning("ktext: no valid cpus; caching on %d.\n",
535  smp_processor_id());
536  cpumask_copy(&ktext_mask,
538  }
539  }
540 
541  address = MEM_SV_INTRPT;
542  pmd = get_pmd(pgtables, address);
543  pfn = 0; /* code starts at PA 0 */
544  if (ktext_small) {
545  /* Allocate an L2 PTE for the kernel text */
546  int cpu = 0;
547  pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
549 
550  if (ktext_local) {
551  if (ktext_nocache)
552  prot = hv_pte_set_mode(prot,
554  else
555  prot = hv_pte_set_mode(prot,
557  } else {
558  prot = hv_pte_set_mode(prot,
560  cpu = cpumask_first(&ktext_mask);
561 
562  prot = ktext_set_nocache(prot);
563  }
564 
565  BUG_ON(address != (unsigned long)_stext);
566  pte = NULL;
567  for (; address < (unsigned long)_einittext;
568  pfn++, address += PAGE_SIZE) {
569  pte_ofs = pte_index(address);
570  if (pte_ofs == 0) {
571  if (pte)
572  assign_pte(pmd++, pte);
573  pte = alloc_pte();
574  }
575  if (!ktext_local) {
576  prot = set_remote_cache_cpu(prot, cpu);
577  cpu = cpumask_next(cpu, &ktext_mask);
578  if (cpu == NR_CPUS)
579  cpu = cpumask_first(&ktext_mask);
580  }
581  pte[pte_ofs] = pfn_pte(pfn, prot);
582  }
583  if (pte)
584  assign_pte(pmd, pte);
585  } else {
586  pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
587  pteval = pte_mkhuge(pteval);
588 #if CHIP_HAS_CBOX_HOME_MAP()
589  if (ktext_hash) {
590  pteval = hv_pte_set_mode(pteval,
592  pteval = ktext_set_nocache(pteval);
593  } else
594 #endif /* CHIP_HAS_CBOX_HOME_MAP() */
595  if (cpumask_weight(&ktext_mask) == 1) {
596  pteval = set_remote_cache_cpu(pteval,
597  cpumask_first(&ktext_mask));
598  pteval = hv_pte_set_mode(pteval,
600  pteval = ktext_set_nocache(pteval);
601  } else if (ktext_nocache)
602  pteval = hv_pte_set_mode(pteval,
604  else
605  pteval = hv_pte_set_mode(pteval,
607  for (; address < (unsigned long)_einittext;
608  pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE)
609  *(pte_t *)(pmd++) = pfn_pte(pfn, pteval);
610  }
611 
612  /* Set swapper_pgprot here so it is flushed to memory right away. */
613  swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
614 
615  /*
616  * Since we may be changing the caching of the stack and page
617  * table itself, we invoke an assembly helper to do the
618  * following steps:
619  *
620  * - flush the cache so we start with an empty slate
621  * - install pgtables[] as the real page table
622  * - flush the TLB so the new page table takes effect
623  */
624  irqmask = interrupt_mask_save_mask();
626  rc = flush_and_install_context(__pa(pgtables),
627  init_pgprot((unsigned long)pgtables),
628  __get_cpu_var(current_asid),
629  cpumask_bits(my_cpu_mask));
631  BUG_ON(rc != 0);
632 
633  /* Copy the page table back to the normal swapper_pg_dir. */
634  memcpy(pgd_base, pgtables, sizeof(pgtables));
635  __install_page_table(pgd_base, __get_cpu_var(current_asid),
636  swapper_pgprot);
637 
638  /*
639  * We just read swapper_pgprot and thus brought it into the cache,
640  * with its new home & caching mode. When we start the other CPUs,
641  * they're going to reference swapper_pgprot via their initial fake
642  * VA-is-PA mappings, which cache everything locally. At that
643  * time, if it's in our cache with a conflicting home, the
644  * simulator's coherence checker will complain. So, flush it out
645  * of our cache; we're not going to ever use it again anyway.
646  */
647  __insn_finv(&swapper_pgprot);
648 }
649 
650 /*
651  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
652  * is valid. The argument is a physical page number.
653  *
654  * On Tile, the only valid things for which we can just hand out unchecked
655  * PTEs are the kernel code and data. Anything else might change its
656  * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
657  * Note that init_thread_union is released to heap soon after boot,
658  * so we include it in the init data.
659  *
660  * For TILE-Gx, we might want to consider allowing access to PA
661  * regions corresponding to PCI space, etc.
662  */
663 int devmem_is_allowed(unsigned long pagenr)
664 {
665  return pagenr < kaddr_to_pfn(_end) &&
666  !(pagenr >= kaddr_to_pfn(&init_thread_union) ||
667  pagenr < kaddr_to_pfn(_einitdata)) &&
668  !(pagenr >= kaddr_to_pfn(_sinittext) ||
669  pagenr <= kaddr_to_pfn(_einittext-1));
670 }
671 
672 #ifdef CONFIG_HIGHMEM
673 static void __init permanent_kmaps_init(pgd_t *pgd_base)
674 {
675  pgd_t *pgd;
676  pud_t *pud;
677  pmd_t *pmd;
678  pte_t *pte;
679  unsigned long vaddr;
680 
681  vaddr = PKMAP_BASE;
682  page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
683 
684  pgd = swapper_pg_dir + pgd_index(vaddr);
685  pud = pud_offset(pgd, vaddr);
686  pmd = pmd_offset(pud, vaddr);
687  pte = pte_offset_kernel(pmd, vaddr);
689 }
690 #endif /* CONFIG_HIGHMEM */
691 
692 
693 #ifndef CONFIG_64BIT
694 static void __init init_free_pfn_range(unsigned long start, unsigned long end)
695 {
696  unsigned long pfn;
697  struct page *page = pfn_to_page(start);
698 
699  for (pfn = start; pfn < end; ) {
700  /* Optimize by freeing pages in large batches */
701  int order = __ffs(pfn);
702  int count, i;
703  struct page *p;
704 
705  if (order >= MAX_ORDER)
706  order = MAX_ORDER-1;
707  count = 1 << order;
708  while (pfn + count > end) {
709  count >>= 1;
710  --order;
711  }
712  for (p = page, i = 0; i < count; ++i, ++p) {
713  __ClearPageReserved(p);
714  /*
715  * Hacky direct set to avoid unnecessary
716  * lock take/release for EVERY page here.
717  */
718  p->_count.counter = 0;
719  p->_mapcount.counter = -1;
720  }
721  init_page_count(page);
722  __free_pages(page, order);
723  totalram_pages += count;
724 
725  page += count;
726  pfn += count;
727  }
728 }
729 
730 static void __init set_non_bootmem_pages_init(void)
731 {
732  struct zone *z;
733  for_each_zone(z) {
734  unsigned long start, end;
735  int nid = z->zone_pgdat->node_id;
736 #ifdef CONFIG_HIGHMEM
737  int idx = zone_idx(z);
738 #endif
739 
740  start = z->zone_start_pfn;
741  end = start + z->spanned_pages;
742  start = max(start, node_free_pfn[nid]);
743  start = max(start, max_low_pfn);
744 
745 #ifdef CONFIG_HIGHMEM
746  if (idx == ZONE_HIGHMEM)
748 #endif
749  if (kdata_huge) {
750  unsigned long percpu_pfn = node_percpu_pfn[nid];
751  if (start < percpu_pfn && end > percpu_pfn)
752  end = percpu_pfn;
753  }
754 #ifdef CONFIG_PCI
755  if (start <= pci_reserve_start_pfn &&
756  end > pci_reserve_start_pfn) {
757  if (end > pci_reserve_end_pfn)
758  init_free_pfn_range(pci_reserve_end_pfn, end);
759  end = pci_reserve_start_pfn;
760  }
761 #endif
762  init_free_pfn_range(start, end);
763  }
764 }
765 #endif
766 
767 /*
768  * paging_init() sets up the page tables - note that all of lowmem is
769  * already mapped by head.S.
770  */
771 void __init paging_init(void)
772 {
773 #ifdef __tilegx__
774  pud_t *pud;
775 #endif
776  pgd_t *pgd_base = swapper_pg_dir;
777 
778  kernel_physical_mapping_init(pgd_base);
779 
780  /*
781  * Fixed mappings, only the page table structure has to be
782  * created - mappings will be set by set_fixmap():
783  */
785  FIXADDR_TOP, pgd_base);
786 
787 #ifdef CONFIG_HIGHMEM
788  permanent_kmaps_init(pgd_base);
789 #endif
790 
791 #ifdef __tilegx__
792  /*
793  * Since GX allocates just one pmd_t array worth of vmalloc space,
794  * we go ahead and allocate it statically here, then share it
795  * globally. As a result we don't have to worry about any task
796  * changing init_mm once we get up and running, and there's no
797  * need for e.g. vmalloc_sync_all().
798  */
800  pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
801  assign_pmd(pud, alloc_pmd());
802 #endif
803 }
804 
805 
806 /*
807  * Walk the kernel page tables and derive the page_home() from
808  * the PTEs, so that set_pte() can properly validate the caching
809  * of all PTEs it sees.
810  */
812 {
813 }
814 
815 static void __init set_max_mapnr_init(void)
816 {
817 #ifdef CONFIG_FLATMEM
819 #endif
820 }
821 
822 void __init mem_init(void)
823 {
824  int codesize, datasize, initsize;
825  int i;
826 #ifndef __tilegx__
827  void *last;
828 #endif
829 
830 #ifdef CONFIG_FLATMEM
831  BUG_ON(!mem_map);
832 #endif
833 
834 #ifdef CONFIG_HIGHMEM
835  /* check that fixmap and pkmap do not overlap */
836  if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
837  pr_err("fixmap and kmap areas overlap"
838  " - this will crash\n");
839  pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
841  FIXADDR_START);
842  BUG();
843  }
844 #endif
845 
846  set_max_mapnr_init();
847 
848  /* this will put all bootmem onto the freelists */
849  totalram_pages += free_all_bootmem();
850 
851 #ifndef CONFIG_64BIT
852  /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
853  set_non_bootmem_pages_init();
854 #endif
855 
856  codesize = (unsigned long)&_etext - (unsigned long)&_text;
857  datasize = (unsigned long)&_end - (unsigned long)&_sdata;
858  initsize = (unsigned long)&_einittext - (unsigned long)&_sinittext;
859  initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
860 
861  pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
862  (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
863  num_physpages << (PAGE_SHIFT-10),
864  codesize >> 10,
865  datasize >> 10,
866  initsize >> 10,
867  (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
868  );
869 
870  /*
871  * In debug mode, dump some interesting memory mappings.
872  */
873 #ifdef CONFIG_HIGHMEM
874  printk(KERN_DEBUG " KMAP %#lx - %#lx\n",
876  printk(KERN_DEBUG " PKMAP %#lx - %#lx\n",
878 #endif
879 #ifdef CONFIG_HUGEVMAP
880  printk(KERN_DEBUG " HUGEMAP %#lx - %#lx\n",
881  HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
882 #endif
883  printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n",
885 #ifdef __tilegx__
886  for (i = MAX_NUMNODES-1; i >= 0; --i) {
887  struct pglist_data *node = &node_data[i];
888  if (node->node_present_pages) {
889  unsigned long start = (unsigned long)
891  unsigned long end = start +
892  (node->node_present_pages << PAGE_SHIFT);
893  printk(KERN_DEBUG " MEM%d %#lx - %#lx\n",
894  i, start, end - 1);
895  }
896  }
897 #else
898  last = high_memory;
899  for (i = MAX_NUMNODES-1; i >= 0; --i) {
900  if ((unsigned long)vbase_map[i] != -1UL) {
901  printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n",
902  i, (unsigned long) (vbase_map[i]),
903  (unsigned long) (last-1));
904  last = vbase_map[i];
905  }
906  }
907 #endif
908 
909 #ifndef __tilegx__
910  /*
911  * Convert from using one lock for all atomic operations to
912  * one per cpu.
913  */
915 #endif
916 }
917 
918 /*
919  * this is for the non-NUMA, single node SMP system case.
920  * Specifically, in the case of x86, we will always add
921  * memory to the highmem for now.
922  */
923 #ifndef CONFIG_NEED_MULTIPLE_NODES
925 {
926  struct pglist_data *pgdata = &contig_page_data;
927  struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
928  unsigned long start_pfn = start >> PAGE_SHIFT;
929  unsigned long nr_pages = size >> PAGE_SHIFT;
930 
931  return __add_pages(zone, start_pfn, nr_pages);
932 }
933 
935 {
936  return -EINVAL;
937 }
938 #endif
939 
941 
943 {
944  pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
945  if (!pgd_cache)
946  panic("pgtable_cache_init(): Cannot create pgd cache");
947 }
948 
949 #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
950 /*
951  * The __w1data area holds data that is only written during initialization,
952  * and is read-only and thus freely cacheable thereafter. Fix the page
953  * table entries that cover that region accordingly.
954  */
955 static void mark_w1data_ro(void)
956 {
957  /* Loop over page table entries */
958  unsigned long addr = (unsigned long)__w1data_begin;
959  BUG_ON((addr & (PAGE_SIZE-1)) != 0);
960  for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
961  unsigned long pfn = kaddr_to_pfn((void *)addr);
962  pte_t *ptep = virt_to_pte(NULL, addr);
963  BUG_ON(pte_huge(*ptep)); /* not relevant for kdata_huge */
964  set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
965  }
966 }
967 #endif
968 
969 #ifdef CONFIG_DEBUG_PAGEALLOC
970 static long __write_once initfree;
971 #else
972 static long __write_once initfree = 1;
973 #endif
974 
975 /* Select whether to free (1) or mark unusable (0) the __init pages. */
976 static int __init set_initfree(char *str)
977 {
978  long val;
979  if (strict_strtol(str, 0, &val) == 0) {
980  initfree = val;
981  pr_info("initfree: %s free init pages\n",
982  initfree ? "will" : "won't");
983  }
984  return 1;
985 }
986 __setup("initfree=", set_initfree);
987 
988 static void free_init_pages(char *what, unsigned long begin, unsigned long end)
989 {
990  unsigned long addr = (unsigned long) begin;
991 
992  if (kdata_huge && !initfree) {
993  pr_warning("Warning: ignoring initfree=0:"
994  " incompatible with kdata=huge\n");
995  initfree = 1;
996  }
997  end = (end + PAGE_SIZE - 1) & PAGE_MASK;
998  local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
999  for (addr = begin; addr < end; addr += PAGE_SIZE) {
1000  /*
1001  * Note we just reset the home here directly in the
1002  * page table. We know this is safe because our caller
1003  * just flushed the caches on all the other cpus,
1004  * and they won't be touching any of these pages.
1005  */
1006  int pfn = kaddr_to_pfn((void *)addr);
1007  struct page *page = pfn_to_page(pfn);
1008  pte_t *ptep = virt_to_pte(NULL, addr);
1009  if (!initfree) {
1010  /*
1011  * If debugging page accesses then do not free
1012  * this memory but mark them not present - any
1013  * buggy init-section access will create a
1014  * kernel page fault:
1015  */
1016  pte_clear(&init_mm, addr, ptep);
1017  continue;
1018  }
1019  __ClearPageReserved(page);
1020  init_page_count(page);
1021  if (pte_huge(*ptep))
1022  BUG_ON(!kdata_huge);
1023  else
1024  set_pte_at(&init_mm, addr, ptep,
1025  pfn_pte(pfn, PAGE_KERNEL));
1026  memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1027  free_page(addr);
1028  totalram_pages++;
1029  }
1030  pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
1031 }
1032 
1033 void free_initmem(void)
1034 {
1035  const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
1036 
1037  /*
1038  * Evict the dirty initdata on the boot cpu, evict the w1data
1039  * wherever it's homed, and evict all the init code everywhere.
1040  * We are guaranteed that no one will touch the init pages any
1041  * more, and although other cpus may be touching the w1data,
1042  * we only actually change the caching on tile64, which won't
1043  * be keeping local copies in the other tiles' caches anyway.
1044  */
1046 
1047  /* Free the data pages that we won't use again after init. */
1048  free_init_pages("unused kernel data",
1049  (unsigned long)_sinitdata,
1050  (unsigned long)_einitdata);
1051 
1052  /*
1053  * Free the pages mapped from 0xc0000000 that correspond to code
1054  * pages from MEM_SV_INTRPT that we won't use again after init.
1055  */
1056  free_init_pages("unused kernel text",
1057  (unsigned long)_sinittext - text_delta,
1058  (unsigned long)_einittext - text_delta);
1059 
1060 #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1061  /*
1062  * Upgrade the .w1data section to globally cached.
1063  * We don't do this on tilepro, since the cache architecture
1064  * pretty much makes it irrelevant, and in any case we end
1065  * up having racing issues with other tiles that may touch
1066  * the data after we flush the cache but before we update
1067  * the PTEs and flush the TLBs, causing sharer shootdowns
1068  * later. Even though this is to clean data, it seems like
1069  * an unnecessary complication.
1070  */
1071  mark_w1data_ro();
1072 #endif
1073 
1074  /* Do a global TLB flush so everyone sees the changes. */
1075  flush_tlb_all();
1076 }