Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
irq.c
Go to the documentation of this file.
1 /*
2  * Common interrupt code for 32 and 64 bit
3  */
4 #include <linux/cpu.h>
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/of.h>
8 #include <linux/seq_file.h>
9 #include <linux/smp.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13 
14 #include <asm/apic.h>
15 #include <asm/io_apic.h>
16 #include <asm/irq.h>
17 #include <asm/idle.h>
18 #include <asm/mce.h>
19 #include <asm/hw_irq.h>
20 
22 
23 /* Function pointer for generic interrupt vector handling */
25 
26 /*
27  * 'what should we do if we get a hw irq event on an illegal vector'.
28  * each architecture has to answer this themselves.
29  */
30 void ack_bad_irq(unsigned int irq)
31 {
32  if (printk_ratelimit())
33  pr_err("unexpected IRQ trap at vector %02x\n", irq);
34 
35  /*
36  * Currently unexpected vectors happen only on SMP and APIC.
37  * We _must_ ack these because every local APIC has only N
38  * irq slots per priority level, and a 'hanging, unacked' IRQ
39  * holds up an irq slot - in excessive cases (when multiple
40  * unexpected vectors occur) that might lock up the APIC
41  * completely.
42  * But only ack when the APIC is enabled -AK
43  */
44  ack_APIC_irq();
45 }
46 
47 #define irq_stats(x) (&per_cpu(irq_stat, x))
48 /*
49  * /proc/interrupts printing for arch specific interrupts
50  */
51 int arch_show_interrupts(struct seq_file *p, int prec)
52 {
53  int j;
54 
55  seq_printf(p, "%*s: ", prec, "NMI");
57  seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
58  seq_printf(p, " Non-maskable interrupts\n");
59 #ifdef CONFIG_X86_LOCAL_APIC
60  seq_printf(p, "%*s: ", prec, "LOC");
62  seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
63  seq_printf(p, " Local timer interrupts\n");
64 
65  seq_printf(p, "%*s: ", prec, "SPU");
67  seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
68  seq_printf(p, " Spurious interrupts\n");
69  seq_printf(p, "%*s: ", prec, "PMI");
71  seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
72  seq_printf(p, " Performance monitoring interrupts\n");
73  seq_printf(p, "%*s: ", prec, "IWI");
75  seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
76  seq_printf(p, " IRQ work interrupts\n");
77  seq_printf(p, "%*s: ", prec, "RTR");
79  seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
80  seq_printf(p, " APIC ICR read retries\n");
81 #endif
83  seq_printf(p, "%*s: ", prec, "PLT");
85  seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
86  seq_printf(p, " Platform interrupts\n");
87  }
88 #ifdef CONFIG_SMP
89  seq_printf(p, "%*s: ", prec, "RES");
91  seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
92  seq_printf(p, " Rescheduling interrupts\n");
93  seq_printf(p, "%*s: ", prec, "CAL");
95  seq_printf(p, "%10u ", irq_stats(j)->irq_call_count -
96  irq_stats(j)->irq_tlb_count);
97  seq_printf(p, " Function call interrupts\n");
98  seq_printf(p, "%*s: ", prec, "TLB");
100  seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
101  seq_printf(p, " TLB shootdowns\n");
102 #endif
103 #ifdef CONFIG_X86_THERMAL_VECTOR
104  seq_printf(p, "%*s: ", prec, "TRM");
106  seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
107  seq_printf(p, " Thermal event interrupts\n");
108 #endif
109 #ifdef CONFIG_X86_MCE_THRESHOLD
110  seq_printf(p, "%*s: ", prec, "THR");
112  seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
113  seq_printf(p, " Threshold APIC interrupts\n");
114 #endif
115 #ifdef CONFIG_X86_MCE
116  seq_printf(p, "%*s: ", prec, "MCE");
118  seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
119  seq_printf(p, " Machine check exceptions\n");
120  seq_printf(p, "%*s: ", prec, "MCP");
122  seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
123  seq_printf(p, " Machine check polls\n");
124 #endif
125  seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
126 #if defined(CONFIG_X86_IO_APIC)
127  seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
128 #endif
129  return 0;
130 }
131 
132 /*
133  * /proc/stat helpers
134  */
135 u64 arch_irq_stat_cpu(unsigned int cpu)
136 {
137  u64 sum = irq_stats(cpu)->__nmi_count;
138 
139 #ifdef CONFIG_X86_LOCAL_APIC
140  sum += irq_stats(cpu)->apic_timer_irqs;
141  sum += irq_stats(cpu)->irq_spurious_count;
142  sum += irq_stats(cpu)->apic_perf_irqs;
143  sum += irq_stats(cpu)->apic_irq_work_irqs;
144  sum += irq_stats(cpu)->icr_read_retry_count;
145 #endif
147  sum += irq_stats(cpu)->x86_platform_ipis;
148 #ifdef CONFIG_SMP
149  sum += irq_stats(cpu)->irq_resched_count;
150  sum += irq_stats(cpu)->irq_call_count;
151 #endif
152 #ifdef CONFIG_X86_THERMAL_VECTOR
153  sum += irq_stats(cpu)->irq_thermal_count;
154 #endif
155 #ifdef CONFIG_X86_MCE_THRESHOLD
156  sum += irq_stats(cpu)->irq_threshold_count;
157 #endif
158 #ifdef CONFIG_X86_MCE
159  sum += per_cpu(mce_exception_count, cpu);
160  sum += per_cpu(mce_poll_count, cpu);
161 #endif
162  return sum;
163 }
164 
166 {
167  u64 sum = atomic_read(&irq_err_count);
168 
169 #ifdef CONFIG_X86_IO_APIC
170  sum += atomic_read(&irq_mis_count);
171 #endif
172  return sum;
173 }
174 
175 
176 /*
177  * do_IRQ handles all normal device IRQ's (the special
178  * SMP cross-CPU interrupts have their own specific
179  * handlers).
180  */
181 unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
182 {
183  struct pt_regs *old_regs = set_irq_regs(regs);
184 
185  /* high bit used in ret_from_ code */
186  unsigned vector = ~regs->orig_ax;
187  unsigned irq;
188 
189  irq_enter();
190  exit_idle();
191 
192  irq = __this_cpu_read(vector_irq[vector]);
193 
194  if (!handle_irq(irq, regs)) {
195  ack_APIC_irq();
196 
197  if (printk_ratelimit())
198  pr_emerg("%s: %d.%d No irq handler for vector (irq %d)\n",
199  __func__, smp_processor_id(), vector, irq);
200  }
201 
202  irq_exit();
203 
204  set_irq_regs(old_regs);
205  return 1;
206 }
207 
208 /*
209  * Handler for X86_PLATFORM_IPI_VECTOR.
210  */
212 {
213  struct pt_regs *old_regs = set_irq_regs(regs);
214 
215  ack_APIC_irq();
216 
217  irq_enter();
218 
219  exit_idle();
220 
221  inc_irq_stat(x86_platform_ipis);
222 
225 
226  irq_exit();
227 
228  set_irq_regs(old_regs);
229 }
230 
232 
233 #ifdef CONFIG_HOTPLUG_CPU
234 /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */
235 void fixup_irqs(void)
236 {
237  unsigned int irq, vector;
238  static int warned;
239  struct irq_desc *desc;
240  struct irq_data *data;
241  struct irq_chip *chip;
242 
243  for_each_irq_desc(irq, desc) {
244  int break_affinity = 0;
245  int set_affinity = 1;
246  const struct cpumask *affinity;
247 
248  if (!desc)
249  continue;
250  if (irq == 2)
251  continue;
252 
253  /* interrupt's are disabled at this point */
254  raw_spin_lock(&desc->lock);
255 
256  data = irq_desc_get_irq_data(desc);
257  affinity = data->affinity;
258  if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
259  cpumask_subset(affinity, cpu_online_mask)) {
260  raw_spin_unlock(&desc->lock);
261  continue;
262  }
263 
264  /*
265  * Complete the irq move. This cpu is going down and for
266  * non intr-remapping case, we can't wait till this interrupt
267  * arrives at this cpu before completing the irq move.
268  */
269  irq_force_complete_move(irq);
270 
271  if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
272  break_affinity = 1;
273  affinity = cpu_online_mask;
274  }
275 
276  chip = irq_data_get_irq_chip(data);
277  if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
278  chip->irq_mask(data);
279 
280  if (chip->irq_set_affinity)
281  chip->irq_set_affinity(data, affinity, true);
282  else if (!(warned++))
283  set_affinity = 0;
284 
285  /*
286  * We unmask if the irq was not marked masked by the
287  * core code. That respects the lazy irq disable
288  * behaviour.
289  */
290  if (!irqd_can_move_in_process_context(data) &&
291  !irqd_irq_masked(data) && chip->irq_unmask)
292  chip->irq_unmask(data);
293 
294  raw_spin_unlock(&desc->lock);
295 
296  if (break_affinity && set_affinity)
297  pr_notice("Broke affinity for irq %i\n", irq);
298  else if (!set_affinity)
299  pr_notice("Cannot set affinity for irq %i\n", irq);
300  }
301 
302  /*
303  * We can remove mdelay() and then send spuriuous interrupts to
304  * new cpu targets for all the irqs that were handled previously by
305  * this cpu. While it works, I have seen spurious interrupt messages
306  * (nothing wrong but still...).
307  *
308  * So for now, retain mdelay(1) and check the IRR and then send those
309  * interrupts to new targets as this cpu is already offlined...
310  */
311  mdelay(1);
312 
313  for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
314  unsigned int irr;
315 
316  if (__this_cpu_read(vector_irq[vector]) < 0)
317  continue;
318 
319  irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
320  if (irr & (1 << (vector % 32))) {
321  irq = __this_cpu_read(vector_irq[vector]);
322 
323  desc = irq_to_desc(irq);
324  data = irq_desc_get_irq_data(desc);
325  chip = irq_data_get_irq_chip(data);
326  raw_spin_lock(&desc->lock);
327  if (chip->irq_retrigger)
328  chip->irq_retrigger(data);
329  raw_spin_unlock(&desc->lock);
330  }
331  __this_cpu_write(vector_irq[vector], -1);
332  }
333 }
334 #endif