27 #include <linux/types.h>
28 #include <linux/string.h>
31 #include <linux/module.h>
34 #include <linux/compiler.h>
36 #include <linux/slab.h>
40 #include <asm/cmpxchg.h>
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
82 #define ASSERT(x) do { } while (0)
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
91 #define PTE_PREFETCH_NUM 8
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96 #define PT64_LEVEL_BITS 9
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
105 #define PT32_LEVEL_BITS 10
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
145 #define CREATE_TRACE_POINTS
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
154 #define PTE_LIST_EXT 3
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
191 static void mmu_spte_set(
u64 *sptep,
u64 spte);
192 static void mmu_free_roots(
struct kvm_vcpu *vcpu);
196 shadow_mmio_mask = mmio_mask;
200 static void mark_mmio_spte(
u64 *sptep,
u64 gfn,
unsigned access)
204 trace_mark_mmio_spte(sptep, gfn, access);
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn <<
PAGE_SHIFT);
208 static bool is_mmio_spte(
u64 spte)
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
213 static gfn_t get_mmio_spte_gfn(
u64 spte)
215 return (spte & ~shadow_mmio_mask) >>
PAGE_SHIFT;
218 static unsigned get_mmio_spte_access(
u64 spte)
220 return (spte & ~shadow_mmio_mask) & ~
PAGE_MASK;
226 mark_mmio_spte(sptep, gfn, access);
233 static inline u64 rsvd_bits(
int s,
int e)
235 return ((1ULL << (e - s + 1)) - 1) <<
s;
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
249 static int is_cpuid_PSE36(
void)
254 static int is_nx(
struct kvm_vcpu *vcpu)
259 static int is_shadow_present_pte(
u64 pte)
264 static int is_large_pte(
u64 pte)
269 static int is_dirty_gpte(
unsigned long pte)
274 static int is_rmap_spte(
u64 pte)
276 return is_shadow_present_pte(pte);
283 if (is_large_pte(pte))
293 static gfn_t pse36_gfn_delta(
u32 gpte)
301 static void __set_spte(
u64 *sptep,
u64 spte)
306 static void __update_clear_spte_fast(
u64 *sptep,
u64 spte)
311 static u64 __update_clear_spte_slow(
u64 *sptep,
u64 spte)
313 return xchg(sptep, spte);
316 static u64 __get_spte_lockless(
u64 *sptep)
321 static bool __check_direct_spte_mmio_pf(
u64 spte)
335 static void count_spte_clear(
u64 *sptep,
u64 spte)
339 if (is_shadow_present_pte(spte))
344 sp->clear_spte_count++;
347 static void __set_spte(
u64 *sptep,
u64 spte)
366 static void __update_clear_spte_fast(
u64 *sptep,
u64 spte)
382 count_spte_clear(sptep, spte);
385 static u64 __update_clear_spte_slow(
u64 *sptep,
u64 spte)
396 count_spte_clear(sptep, spte);
408 static u64 __get_spte_lockless(
u64 *sptep)
415 count = sp->clear_spte_count;
425 count != sp->clear_spte_count))
431 static bool __check_direct_spte_mmio_pf(
u64 spte)
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
442 (sspte.
spte_high & high_mmio_mask) == high_mmio_mask)
449 static bool spte_is_locklessly_modifiable(
u64 spte)
454 static bool spte_has_volatile_bits(
u64 spte)
462 if (spte_is_locklessly_modifiable(spte))
465 if (!shadow_accessed_mask)
468 if (!is_shadow_present_pte(spte))
471 if ((spte & shadow_accessed_mask) &&
472 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
478 static bool spte_is_bit_cleared(
u64 old_spte,
u64 new_spte,
u64 bit_mask)
480 return (old_spte & bit_mask) && !(new_spte & bit_mask);
489 static void mmu_spte_set(
u64 *sptep,
u64 new_spte)
491 WARN_ON(is_shadow_present_pte(*sptep));
492 __set_spte(sptep, new_spte);
504 static bool mmu_spte_update(
u64 *sptep,
u64 new_spte)
506 u64 old_spte = *sptep;
509 WARN_ON(!is_rmap_spte(new_spte));
511 if (!is_shadow_present_pte(old_spte)) {
512 mmu_spte_set(sptep, new_spte);
516 if (!spte_has_volatile_bits(old_spte))
517 __update_clear_spte_fast(sptep, new_spte);
519 old_spte = __update_clear_spte_slow(sptep, new_spte);
526 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
529 if (!shadow_accessed_mask)
532 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
534 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
545 static int mmu_spte_clear_track_bits(
u64 *sptep)
548 u64 old_spte = *sptep;
550 if (!spte_has_volatile_bits(old_spte))
551 __update_clear_spte_fast(sptep, 0ull);
553 old_spte = __update_clear_spte_slow(sptep, 0ull);
555 if (!is_rmap_spte(old_spte))
558 pfn = spte_to_pfn(old_spte);
567 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
569 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
579 static void mmu_spte_clear_no_track(
u64 *sptep)
581 __update_clear_spte_fast(sptep, 0ull);
584 static u64 mmu_spte_get_lockless(
u64 *sptep)
586 return __get_spte_lockless(sptep);
589 static void walk_shadow_page_lockless_begin(
struct kvm_vcpu *vcpu)
604 static void walk_shadow_page_lockless_end(
struct kvm_vcpu *vcpu)
621 if (cache->
nobjs >= min)
624 obj = kmem_cache_zalloc(base_cache,
GFP_KERNEL);
649 if (cache->
nobjs >= min)
666 static int mmu_topup_memory_caches(
struct kvm_vcpu *vcpu)
670 r = mmu_topup_memory_cache(&vcpu->
arch.mmu_pte_list_desc_cache,
674 r = mmu_topup_memory_cache_page(&vcpu->
arch.mmu_page_cache, 8);
677 r = mmu_topup_memory_cache(&vcpu->
arch.mmu_page_header_cache,
678 mmu_page_header_cache, 4);
683 static void mmu_free_memory_caches(
struct kvm_vcpu *vcpu)
685 mmu_free_memory_cache(&vcpu->
arch.mmu_pte_list_desc_cache,
686 pte_list_desc_cache);
687 mmu_free_memory_cache_page(&vcpu->
arch.mmu_page_cache);
688 mmu_free_memory_cache(&vcpu->
arch.mmu_page_header_cache,
689 mmu_page_header_cache);
703 return mmu_memory_cache_alloc(&vcpu->
arch.mmu_pte_list_desc_cache);
722 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
737 idx = gfn_to_index(gfn, slot->
base_gfn, level);
738 return &slot->
arch.lpage_info[level - 2][
idx];
741 static void account_shadowed(
struct kvm *
kvm,
gfn_t gfn)
750 linfo = lpage_info_slot(gfn, slot, i);
753 kvm->
arch.indirect_shadow_pages++;
756 static void unaccount_shadowed(
struct kvm *kvm,
gfn_t gfn)
765 linfo = lpage_info_slot(gfn, slot, i);
769 kvm->
arch.indirect_shadow_pages--;
772 static int has_wrprotected_page(
struct kvm *kvm,
781 linfo = lpage_info_slot(gfn, slot, level);
788 static int host_mapping_level(
struct kvm *kvm,
gfn_t gfn)
807 gfn_to_memslot_dirty_bitmap(
struct kvm_vcpu *vcpu,
gfn_t gfn,
820 static bool mapping_level_dirty_bitmap(
struct kvm_vcpu *vcpu,
gfn_t large_gfn)
822 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn,
true);
825 static int mapping_level(
struct kvm_vcpu *vcpu,
gfn_t large_gfn)
829 host_level = host_mapping_level(vcpu->
kvm, large_gfn);
838 if (has_wrprotected_page(vcpu->
kvm, large_gfn, level))
856 static int pte_list_add(
struct kvm_vcpu *vcpu,
u64 *spte,
857 unsigned long *pte_list)
863 rmap_printk(
"pte_list_add: %p %llx 0->1\n", spte, *spte);
864 *pte_list = (
unsigned long)spte;
865 }
else if (!(*pte_list & 1)) {
866 rmap_printk(
"pte_list_add: %p %llx 1->many\n", spte, *spte);
867 desc = mmu_alloc_pte_list_desc(vcpu);
869 desc->
sptes[1] = spte;
870 *pte_list = (
unsigned long)desc | 1;
873 rmap_printk(
"pte_list_add: %p %llx many->many\n", spte, *spte);
880 desc->
more = mmu_alloc_pte_list_desc(vcpu);
883 for (i = 0; desc->
sptes[
i]; ++
i)
891 pte_list_desc_remove_entry(
unsigned long *pte_list,
struct pte_list_desc *desc,
902 if (!prev_desc && !desc->
more)
903 *pte_list = (
unsigned long)desc->
sptes[0];
908 *pte_list = (
unsigned long)desc->
more | 1;
909 mmu_free_pte_list_desc(desc);
912 static void pte_list_remove(
u64 *spte,
unsigned long *pte_list)
921 }
else if (!(*pte_list & 1)) {
923 if ((
u64 *)*pte_list != spte) {
929 rmap_printk(
"pte_list_remove: %p many->many\n", spte);
934 if (desc->
sptes[i] == spte) {
935 pte_list_desc_remove_entry(pte_list,
943 pr_err(
"pte_list_remove: %p many->many\n", spte);
957 if (!(*pte_list & 1))
958 return fn((
u64 *)*pte_list);
968 static unsigned long *__gfn_to_rmap(
gfn_t gfn,
int level,
973 idx = gfn_to_index(gfn, slot->
base_gfn, level);
980 static unsigned long *gfn_to_rmap(
struct kvm *kvm,
gfn_t gfn,
int level)
985 return __gfn_to_rmap(gfn, level, slot);
988 static bool rmap_can_add(
struct kvm_vcpu *vcpu)
992 cache = &vcpu->
arch.mmu_pte_list_desc_cache;
993 return mmu_memory_cache_free_objects(cache);
999 unsigned long *rmapp;
1001 sp = page_header(
__pa(spte));
1002 kvm_mmu_page_set_gfn(sp, spte - sp->
spt, gfn);
1004 return pte_list_add(vcpu, spte, rmapp);
1007 static void rmap_remove(
struct kvm *kvm,
u64 *spte)
1011 unsigned long *rmapp;
1013 sp = page_header(
__pa(spte));
1014 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->
spt);
1015 rmapp = gfn_to_rmap(kvm, gfn, sp->
role.
level);
1016 pte_list_remove(spte, rmapp);
1048 return iter->
desc->sptes[iter->
pos];
1063 sptep = iter->
desc->sptes[iter->
pos];
1073 return iter->
desc->sptes[iter->
pos];
1080 static void drop_spte(
struct kvm *kvm,
u64 *sptep)
1082 if (mmu_spte_clear_track_bits(sptep))
1083 rmap_remove(kvm, sptep);
1087 static bool __drop_large_spte(
struct kvm *kvm,
u64 *sptep)
1089 if (is_large_pte(*sptep)) {
1092 drop_spte(kvm, sptep);
1100 static void drop_large_spte(
struct kvm_vcpu *vcpu,
u64 *sptep)
1102 if (__drop_large_spte(vcpu->
kvm, sptep))
1121 spte_write_protect(
struct kvm *kvm,
u64 *sptep,
bool *flush,
bool pt_protect)
1125 if (!is_writable_pte(spte) &&
1126 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1129 rmap_printk(
"rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1131 if (__drop_large_spte(kvm, sptep)) {
1140 *flush |= mmu_spte_update(sptep, spte);
1144 static bool __rmap_write_protect(
struct kvm *kvm,
unsigned long *rmapp,
1145 int level,
bool pt_protect)
1151 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1153 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1154 sptep = rmap_get_first(*rmapp, &iter);
1158 sptep = rmap_get_next(&iter);
1178 unsigned long *rmapp;
1181 rmapp = __gfn_to_rmap(slot->
base_gfn + gfn_offset +
__ffs(mask),
1190 static bool rmap_write_protect(
struct kvm *kvm,
u64 gfn)
1193 unsigned long *rmapp;
1195 bool write_protected =
false;
1201 rmapp = __gfn_to_rmap(gfn, i, slot);
1202 write_protected |= __rmap_write_protect(kvm, rmapp, i,
true);
1205 return write_protected;
1208 static int kvm_unmap_rmapp(
struct kvm *kvm,
unsigned long *rmapp,
1213 int need_tlb_flush = 0;
1215 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1217 rmap_printk(
"kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1219 drop_spte(kvm, sptep);
1223 return need_tlb_flush;
1226 static int kvm_set_pte_rmapp(
struct kvm *kvm,
unsigned long *rmapp,
1239 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1240 BUG_ON(!is_shadow_present_pte(*sptep));
1241 rmap_printk(
"kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1246 drop_spte(kvm, sptep);
1247 sptep = rmap_get_first(*rmapp, &iter);
1250 new_spte |= (
u64)new_pfn << PAGE_SHIFT;
1254 new_spte &= ~shadow_accessed_mask;
1256 mmu_spte_clear_track_bits(sptep);
1257 mmu_spte_set(sptep, new_spte);
1258 sptep = rmap_get_next(&iter);
1268 static int kvm_handle_hva_range(
struct kvm *kvm,
1269 unsigned long start,
1272 int (*handler)(
struct kvm *kvm,
1273 unsigned long *rmapp,
1275 unsigned long data))
1285 unsigned long hva_start, hva_end;
1286 gfn_t gfn_start, gfn_end;
1290 (memslot->
npages << PAGE_SHIFT));
1291 if (hva_start >= hva_end)
1297 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1298 gfn_end = hva_to_gfn_memslot(hva_end +
PAGE_SIZE - 1, memslot);
1302 unsigned long idx, idx_end;
1303 unsigned long *rmapp;
1309 idx = gfn_to_index(gfn_start, memslot->
base_gfn, j);
1310 idx_end = gfn_to_index(gfn_end - 1, memslot->
base_gfn, j);
1312 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1314 for (; idx <= idx_end; ++
idx)
1315 ret |=
handler(kvm, rmapp++, memslot, data);
1322 static int kvm_handle_hva(
struct kvm *kvm,
unsigned long hva,
1324 int (*handler)(
struct kvm *kvm,
unsigned long *rmapp,
1326 unsigned long data))
1328 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1333 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1338 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1343 kvm_handle_hva(kvm, hva, (
unsigned long)&pte, kvm_set_pte_rmapp);
1346 static int kvm_age_rmapp(
struct kvm *kvm,
unsigned long *rmapp,
1361 if (!shadow_accessed_mask) {
1362 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1366 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1367 sptep = rmap_get_next(&iter)) {
1368 BUG_ON(!is_shadow_present_pte(*sptep));
1370 if (*sptep & shadow_accessed_mask) {
1373 (
unsigned long *)sptep);
1378 trace_kvm_age_page(data, slot, young);
1382 static int kvm_test_age_rmapp(
struct kvm *kvm,
unsigned long *rmapp,
1394 if (!shadow_accessed_mask)
1397 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1398 sptep = rmap_get_next(&iter)) {
1399 BUG_ON(!is_shadow_present_pte(*sptep));
1401 if (*sptep & shadow_accessed_mask) {
1410 #define RMAP_RECYCLE_THRESHOLD 1000
1414 unsigned long *rmapp;
1417 sp = page_header(
__pa(spte));
1421 kvm_unmap_rmapp(vcpu->
kvm, rmapp,
NULL, 0);
1427 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1432 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1436 static int is_empty_shadow_page(
u64 *
spt)
1441 for (pos = spt, end = pos +
PAGE_SIZE /
sizeof(
u64); pos !=
end; pos++)
1442 if (is_shadow_present_pte(*pos)) {
1457 static inline void kvm_mod_used_mmu_pages(
struct kvm *kvm,
int nr)
1459 kvm->
arch.n_used_mmu_pages +=
nr;
1460 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1469 static void kvm_mmu_isolate_page(
struct kvm_mmu_page *sp)
1488 static unsigned kvm_page_table_hashfn(
gfn_t gfn)
1493 static void mmu_page_add_parent_pte(
struct kvm_vcpu *vcpu,
1502 static void mmu_page_remove_parent_pte(
struct kvm_mmu_page *sp,
1511 mmu_page_remove_parent_pte(sp, parent_pte);
1512 mmu_spte_clear_no_track(parent_pte);
1519 sp = mmu_memory_cache_alloc(&vcpu->
arch.mmu_page_header_cache);
1520 sp->
spt = mmu_memory_cache_alloc(&vcpu->
arch.mmu_page_cache);
1522 sp->
gfns = mmu_memory_cache_alloc(&vcpu->
arch.mmu_page_cache);
1524 list_add(&sp->
link, &vcpu->
kvm->arch.active_mmu_pages);
1527 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1528 kvm_mod_used_mmu_pages(vcpu->
kvm, +1);
1532 static void mark_unsync(
u64 *spte);
1533 static void kvm_mmu_mark_parents_unsync(
struct kvm_mmu_page *sp)
1538 static void mark_unsync(
u64 *spte)
1543 sp = page_header(
__pa(spte));
1544 index = spte - sp->
spt;
1549 kvm_mmu_mark_parents_unsync(sp);
1552 static int nonpaging_sync_page(
struct kvm_vcpu *vcpu,
1558 static void nonpaging_invlpg(
struct kvm_vcpu *vcpu,
gva_t gva)
1562 static void nonpaging_update_pte(
struct kvm_vcpu *vcpu,
1569 #define KVM_PAGE_ARRAY_NR 16
1585 for (i=0; i < pvec->
nr; i++)
1586 if (pvec->
page[i].sp == sp)
1598 int i,
ret, nr_unsync_leaf = 0;
1604 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1605 goto clear_child_bitmap;
1610 if (mmu_pages_add(pvec, child, i))
1613 ret = __mmu_unsync_walk(child, pvec);
1615 goto clear_child_bitmap;
1617 nr_unsync_leaf +=
ret;
1620 }
else if (child->
unsync) {
1622 if (mmu_pages_add(pvec, child, i))
1625 goto clear_child_bitmap;
1636 return nr_unsync_leaf;
1645 mmu_pages_add(pvec, sp, 0);
1646 return __mmu_unsync_walk(sp, pvec);
1649 static void kvm_unlink_unsync_page(
struct kvm *kvm,
struct kvm_mmu_page *sp)
1652 trace_kvm_mmu_sync_page(sp);
1654 --kvm->
stat.mmu_unsync;
1657 static int kvm_mmu_prepare_zap_page(
struct kvm *kvm,
struct kvm_mmu_page *sp,
1659 static void kvm_mmu_commit_zap_page(
struct kvm *kvm,
1662 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1663 hlist_for_each_entry(sp, pos, \
1664 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1665 if ((sp)->gfn != (gfn)) {} else
1667 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1668 hlist_for_each_entry(sp, pos, \
1669 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1670 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1671 (sp)->role.invalid) {} else
1675 struct list_head *invalid_list,
bool clear_unsync)
1678 kvm_mmu_prepare_zap_page(vcpu->
kvm, sp, invalid_list);
1683 kvm_unlink_unsync_page(vcpu->
kvm, sp);
1685 if (vcpu->
arch.mmu.sync_page(vcpu, sp)) {
1686 kvm_mmu_prepare_zap_page(vcpu->
kvm, sp, invalid_list);
1694 static int kvm_sync_page_transient(
struct kvm_vcpu *vcpu,
1700 ret = __kvm_sync_page(vcpu, sp, &invalid_list,
false);
1702 kvm_mmu_commit_zap_page(vcpu->
kvm, &invalid_list);
1707 #ifdef CONFIG_KVM_MMU_AUDIT
1710 static void kvm_mmu_audit(
struct kvm_vcpu *vcpu,
int point) { }
1711 static void mmu_audit_disable(
void) { }
1717 return __kvm_sync_page(vcpu, sp, invalid_list,
true);
1721 static void kvm_sync_pages(
struct kvm_vcpu *vcpu,
gfn_t gfn)
1733 kvm_unlink_unsync_page(vcpu->
kvm, s);
1735 (vcpu->
arch.mmu.sync_page(vcpu, s))) {
1736 kvm_mmu_prepare_zap_page(vcpu->
kvm, s, &invalid_list);
1742 kvm_mmu_commit_zap_page(vcpu->
kvm, &invalid_list);
1752 #define for_each_sp(pvec, sp, parents, i) \
1753 for (i = mmu_pages_next(&pvec, &parents, -1), \
1754 sp = pvec.page[i].sp; \
1755 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1756 i = mmu_pages_next(&pvec, &parents, i))
1764 for (n = i+1; n < pvec->
nr; n++) {
1768 parents->
idx[0] = pvec->
page[
n].idx;
1779 static void mmu_pages_clear_parents(
struct mmu_page_path *parents)
1782 unsigned int level = 0;
1798 static void kvm_mmu_pages_init(
struct kvm_mmu_page *parent,
1806 static void mmu_sync_children(
struct kvm_vcpu *vcpu,
1815 kvm_mmu_pages_init(parent, &parents, &
pages);
1816 while (mmu_unsync_walk(parent, &
pages)) {
1817 bool protected =
false;
1820 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1826 kvm_sync_page(vcpu, sp, &invalid_list);
1827 mmu_pages_clear_parents(&parents);
1829 kvm_mmu_commit_zap_page(vcpu->
kvm, &invalid_list);
1831 kvm_mmu_pages_init(parent, &parents, &
pages);
1835 static void init_shadow_page_table(
struct kvm_mmu_page *sp)
1843 static void __clear_sp_write_flooding_count(
struct kvm_mmu_page *sp)
1848 static void clear_sp_write_flooding_count(
u64 *spte)
1852 __clear_sp_write_flooding_count(sp);
1867 bool need_sync =
false;
1875 if (!vcpu->
arch.mmu.direct_map
1879 role.quadrant = quadrant;
1882 if (!need_sync && sp->
unsync)
1888 if (sp->
unsync && kvm_sync_page_transient(vcpu, sp))
1891 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1894 kvm_mmu_mark_parents_unsync(sp);
1896 kvm_mmu_mark_parents_unsync(sp);
1898 __clear_sp_write_flooding_count(sp);
1899 trace_kvm_mmu_get_page(sp,
false);
1902 ++vcpu->
kvm->stat.mmu_cache_miss;
1903 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1909 &vcpu->
kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1911 if (rmap_write_protect(vcpu->
kvm, gfn))
1914 kvm_sync_pages(vcpu, gfn);
1916 account_shadowed(vcpu->
kvm, gfn);
1918 init_shadow_page_table(sp);
1919 trace_kvm_mmu_get_page(sp,
true);
1928 iterator->
level = vcpu->
arch.mmu.shadow_root_level;
1932 !vcpu->
arch.mmu.direct_map)
1937 = vcpu->
arch.mmu.pae_root[(addr >> 30) & 3];
1941 iterator->
level = 0;
1958 if (is_last_spte(spte, iterator->
level)) {
1959 iterator->
level = 0;
1969 return __shadow_walk_next(iterator, *iterator->
sptep);
1979 mmu_spte_set(sptep, spte);
1982 static void validate_direct_spte(
struct kvm_vcpu *vcpu,
u64 *sptep,
1983 unsigned direct_access)
1985 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1999 drop_parent_pte(child, sptep);
2004 static bool mmu_page_zap_pte(
struct kvm *kvm,
struct kvm_mmu_page *sp,
2011 if (is_shadow_present_pte(pte)) {
2012 if (is_last_spte(pte, sp->
role.
level)) {
2013 drop_spte(kvm, spte);
2014 if (is_large_pte(pte))
2018 drop_parent_pte(child, spte);
2023 if (is_mmio_spte(pte))
2024 mmu_spte_clear_no_track(spte);
2029 static void kvm_mmu_page_unlink_children(
struct kvm *kvm,
2035 mmu_page_zap_pte(kvm, sp, sp->
spt + i);
2038 static void kvm_mmu_put_page(
struct kvm_mmu_page *sp,
u64 *parent_pte)
2040 mmu_page_remove_parent_pte(sp, parent_pte);
2043 static void kvm_mmu_unlink_parents(
struct kvm *kvm,
struct kvm_mmu_page *sp)
2048 while ((sptep = rmap_get_first(sp->
parent_ptes, &iter)))
2049 drop_parent_pte(sp, sptep);
2052 static int mmu_zap_unsync_children(
struct kvm *kvm,
2063 kvm_mmu_pages_init(parent, &parents, &
pages);
2064 while (mmu_unsync_walk(parent, &
pages)) {
2068 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2069 mmu_pages_clear_parents(&parents);
2072 kvm_mmu_pages_init(parent, &parents, &
pages);
2078 static int kvm_mmu_prepare_zap_page(
struct kvm *kvm,
struct kvm_mmu_page *sp,
2083 trace_kvm_mmu_prepare_zap_page(sp);
2084 ++kvm->
stat.mmu_shadow_zapped;
2085 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2086 kvm_mmu_page_unlink_children(kvm, sp);
2087 kvm_mmu_unlink_parents(kvm, sp);
2089 unaccount_shadowed(kvm, sp->
gfn);
2091 kvm_unlink_unsync_page(kvm, sp);
2095 list_move(&sp->
link, invalid_list);
2096 kvm_mod_used_mmu_pages(kvm, -1);
2098 list_move(&sp->
link, &kvm->
arch.active_mmu_pages);
2106 static void kvm_mmu_commit_zap_page(
struct kvm *kvm,
2111 if (list_empty(invalid_list))
2129 kvm_mmu_isolate_page(sp);
2130 kvm_mmu_free_page(sp);
2131 }
while (!list_empty(invalid_list));
2147 if (kvm->
arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2148 while (kvm->
arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2149 !list_empty(&kvm->
arch.active_mmu_pages)) {
2154 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2156 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2157 goal_nr_mmu_pages = kvm->
arch.n_used_mmu_pages;
2160 kvm->
arch.n_max_mmu_pages = goal_nr_mmu_pages;
2170 pgprintk(
"%s: looking for gfn %llx\n", __func__, gfn);
2174 pgprintk(
"%s: gfn %llx role %x\n", __func__, gfn,
2177 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2179 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2186 static void page_header_update_slot(
struct kvm *kvm,
void *pte,
gfn_t gfn)
2188 int slot = memslot_id(kvm, gfn);
2203 u8 prev_match, curr_match;
2213 if (mtrr_state->
have_fixed && (start < 0x100000)) {
2216 if (start < 0x80000) {
2218 idx += (start >> 16);
2220 }
else if (start < 0xC0000) {
2222 idx += ((start - 0x80000) >> 14);
2224 }
else if (start < 0x1000000) {
2226 idx += ((start - 0xC0000) >> 12);
2236 if (!(mtrr_state->
enabled & 2))
2243 if (!(mtrr_state->
var_ranges[i].mask_lo & (1 << 11)))
2249 (mtrr_state->
var_ranges[i].mask_lo & PAGE_MASK);
2251 start_state = ((start &
mask) == (base & mask));
2252 end_state = ((end &
mask) == (base & mask));
2253 if (start_state != end_state)
2256 if ((start & mask) != (base &
mask))
2259 curr_match = mtrr_state->
var_ranges[
i].base_lo & 0xff;
2260 if (prev_match == 0xFF) {
2261 prev_match = curr_match;
2277 if (prev_match != curr_match)
2281 if (prev_match != 0xFF)
2291 mtrr = get_mtrr_type(&vcpu->
arch.mtrr_state, gfn << PAGE_SHIFT,
2293 if (mtrr == 0xfe || mtrr == 0xff)
2301 trace_kvm_mmu_unsync_page(sp);
2302 ++vcpu->
kvm->stat.mmu_unsync;
2305 kvm_mmu_mark_parents_unsync(sp);
2308 static void kvm_unsync_pages(
struct kvm_vcpu *vcpu,
gfn_t gfn)
2317 __kvm_unsync_page(vcpu, s);
2321 static int mmu_need_write_protect(
struct kvm_vcpu *vcpu,
gfn_t gfn,
2326 bool need_unsync =
false;
2335 if (!need_unsync && !s->
unsync) {
2340 kvm_unsync_pages(vcpu, gfn);
2344 static int set_spte(
struct kvm_vcpu *vcpu,
u64 *sptep,
2345 unsigned pte_access,
int user_fault,
2346 int write_fault,
int level,
2348 bool can_unsync,
bool host_writable)
2353 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2358 spte |= shadow_accessed_mask;
2361 spte |= shadow_x_mask;
2363 spte |= shadow_nx_mask;
2366 spte |= shadow_user_mask;
2379 spte |= (
u64)pfn << PAGE_SHIFT;
2382 || (!vcpu->
arch.mmu.direct_map && write_fault
2383 && !is_write_protection(vcpu) && !user_fault)) {
2386 has_wrprotected_page(vcpu->
kvm, gfn, level)) {
2388 drop_spte(vcpu->
kvm, sptep);
2394 if (!vcpu->
arch.mmu.direct_map
2395 && !(pte_access & ACC_WRITE_MASK)) {
2413 if (!can_unsync && is_writable_pte(*sptep))
2416 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2417 pgprintk(
"%s: found shadow page for %llx, marking ro\n",
2420 pte_access &= ~ACC_WRITE_MASK;
2425 if (pte_access & ACC_WRITE_MASK)
2429 if (mmu_spte_update(sptep, spte))
2435 static void mmu_set_spte(
struct kvm_vcpu *vcpu,
u64 *sptep,
2436 unsigned pt_access,
unsigned pte_access,
2437 int user_fault,
int write_fault,
2439 pfn_t pfn,
bool speculative,
2442 int was_rmapped = 0;
2445 pgprintk(
"%s: spte %llx access %x write_fault %d"
2446 " user_fault %d gfn %llx\n",
2447 __func__, *sptep, pt_access,
2448 write_fault, user_fault, gfn);
2450 if (is_rmap_spte(*sptep)) {
2456 !is_large_pte(*sptep)) {
2461 drop_parent_pte(child, sptep);
2463 }
else if (pfn != spte_to_pfn(*sptep)) {
2464 pgprintk(
"hfn old %llx new %llx\n",
2465 spte_to_pfn(*sptep), pfn);
2466 drop_spte(vcpu->
kvm, sptep);
2472 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2473 level, gfn, pfn, speculative,
true,
2480 if (
unlikely(is_mmio_spte(*sptep) && emulate))
2483 pgprintk(
"%s: setting spte %llx\n", __func__, *sptep);
2484 pgprintk(
"instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2485 is_large_pte(*sptep)?
"2MB" :
"4kB",
2488 if (!was_rmapped && is_large_pte(*sptep))
2489 ++vcpu->
kvm->stat.lpages;
2491 if (is_shadow_present_pte(*sptep)) {
2492 page_header_update_slot(vcpu->
kvm, sptep, gfn);
2494 rmap_count = rmap_add(vcpu, sptep, gfn);
2496 rmap_recycle(vcpu, sptep, gfn);
2503 static void nonpaging_new_cr3(
struct kvm_vcpu *vcpu)
2505 mmu_free_roots(vcpu);
2513 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2520 static int direct_pte_prefetch_many(
struct kvm_vcpu *vcpu,
2529 gfn = kvm_mmu_page_get_gfn(sp, start - sp->
spt);
2530 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2537 for (i = 0; i <
ret; i++, gfn++, start++)
2538 mmu_set_spte(vcpu, start,
ACC_ALL,
2546 static void __direct_pte_prefetch(
struct kvm_vcpu *vcpu,
2558 if (is_shadow_present_pte(*spte) || spte == sptep) {
2561 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2569 static void direct_pte_prefetch(
struct kvm_vcpu *vcpu,
u64 *sptep)
2579 if (!shadow_accessed_mask)
2582 sp = page_header(
__pa(sptep));
2586 __direct_pte_prefetch(vcpu, sp, sptep);
2590 int map_writable,
int level,
gfn_t gfn,
pfn_t pfn,
2599 if (iterator.
level == level) {
2600 unsigned pte_access =
ACC_ALL;
2602 mmu_set_spte(vcpu, iterator.
sptep,
ACC_ALL, pte_access,
2604 level, gfn, pfn, prefault, map_writable);
2605 direct_pte_prefetch(vcpu, iterator.
sptep);
2606 ++vcpu->
stat.pf_fixed;
2610 if (!is_shadow_present_pte(*iterator.
sptep)) {
2611 u64 base_addr = iterator.
addr;
2615 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.
addr,
2619 mmu_spte_set(iterator.
sptep,
2622 | shadow_user_mask | shadow_x_mask
2623 | shadow_accessed_mask);
2636 info.si_addr = (
void __user *)address;
2661 static void transparent_hugepage_adjust(
struct kvm_vcpu *vcpu,
2666 int level = *levelp;
2690 VM_BUG_ON((gfn & mask) != (pfn & mask));
2702 static bool mmu_invalid_pfn(
pfn_t pfn)
2704 return unlikely(is_invalid_pfn(pfn));
2708 pfn_t pfn,
unsigned access,
int *ret_val)
2713 if (
unlikely(is_invalid_pfn(pfn))) {
2714 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2719 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2741 fast_pf_fix_direct_spte(
struct kvm_vcpu *vcpu,
u64 *sptep,
u64 spte)
2752 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->
spt);
2765 static bool fast_page_fault(
struct kvm_vcpu *vcpu,
gva_t gva,
int level,
2772 if (!page_fault_can_be_fast(vcpu, error_code))
2775 walk_shadow_page_lockless_begin(vcpu);
2777 if (!is_shadow_present_pte(spte) || iterator.level < level)
2784 if (!is_rmap_spte(spte)) {
2789 if (!is_last_spte(spte, level))
2798 if (is_writable_pte(spte)) {
2807 if (!spte_is_locklessly_modifiable(spte))
2815 ret = fast_pf_fix_direct_spte(vcpu, iterator.
sptep, spte);
2817 trace_fast_page_fault(vcpu, gva, error_code, iterator.
sptep,
2819 walk_shadow_page_lockless_end(vcpu);
2824 static bool try_async_pf(
struct kvm_vcpu *vcpu,
bool prefault,
gfn_t gfn,
2828 gfn_t gfn,
bool prefault)
2834 unsigned long mmu_seq;
2837 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2838 if (
likely(!force_pt_level)) {
2839 level = mapping_level(vcpu, gfn);
2852 if (fast_page_fault(vcpu, v, level, error_code))
2855 mmu_seq = vcpu->
kvm->mmu_notifier_seq;
2858 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2861 if (handle_abnormal_pfn(vcpu, v, gfn, pfn,
ACC_ALL, &r))
2864 spin_lock(&vcpu->
kvm->mmu_lock);
2865 if (mmu_notifier_retry(vcpu, mmu_seq))
2867 kvm_mmu_free_some_pages(vcpu);
2868 if (
likely(!force_pt_level))
2869 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2870 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2872 spin_unlock(&vcpu->
kvm->mmu_lock);
2878 spin_unlock(&vcpu->
kvm->mmu_lock);
2884 static void mmu_free_roots(
struct kvm_vcpu *vcpu)
2892 spin_lock(&vcpu->
kvm->mmu_lock);
2895 vcpu->
arch.mmu.direct_map)) {
2898 sp = page_header(root);
2901 kvm_mmu_prepare_zap_page(vcpu->
kvm, sp, &invalid_list);
2902 kvm_mmu_commit_zap_page(vcpu->
kvm, &invalid_list);
2905 spin_unlock(&vcpu->
kvm->mmu_lock);
2908 for (i = 0; i < 4; ++
i) {
2913 sp = page_header(root);
2916 kvm_mmu_prepare_zap_page(vcpu->
kvm, sp,
2921 kvm_mmu_commit_zap_page(vcpu->
kvm, &invalid_list);
2922 spin_unlock(&vcpu->
kvm->mmu_lock);
2926 static int mmu_check_root(
struct kvm_vcpu *vcpu,
gfn_t root_gfn)
2938 static int mmu_alloc_direct_roots(
struct kvm_vcpu *vcpu)
2944 spin_lock(&vcpu->
kvm->mmu_lock);
2945 kvm_mmu_free_some_pages(vcpu);
2949 spin_unlock(&vcpu->
kvm->mmu_lock);
2952 for (i = 0; i < 4; ++
i) {
2956 spin_lock(&vcpu->
kvm->mmu_lock);
2957 kvm_mmu_free_some_pages(vcpu);
2958 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2964 spin_unlock(&vcpu->
kvm->mmu_lock);
2967 vcpu->
arch.mmu.root_hpa =
__pa(vcpu->
arch.mmu.pae_root);
2974 static int mmu_alloc_shadow_roots(
struct kvm_vcpu *vcpu)
2983 if (mmu_check_root(vcpu, root_gfn))
2995 spin_lock(&vcpu->
kvm->mmu_lock);
2996 kvm_mmu_free_some_pages(vcpu);
3001 spin_unlock(&vcpu->
kvm->mmu_lock);
3002 vcpu->
arch.mmu.root_hpa = root;
3015 for (i = 0; i < 4; ++
i) {
3020 pdptr = vcpu->
arch.mmu.get_pdptr(vcpu, i);
3021 if (!is_present_gpte(pdptr)) {
3022 vcpu->
arch.mmu.pae_root[
i] = 0;
3026 if (mmu_check_root(vcpu, root_gfn))
3029 spin_lock(&vcpu->
kvm->mmu_lock);
3030 kvm_mmu_free_some_pages(vcpu);
3031 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3036 spin_unlock(&vcpu->
kvm->mmu_lock);
3038 vcpu->
arch.mmu.pae_root[
i] = root | pm_mask;
3040 vcpu->
arch.mmu.root_hpa =
__pa(vcpu->
arch.mmu.pae_root);
3047 if (vcpu->
arch.mmu.lm_root ==
NULL) {
3056 if (lm_root ==
NULL)
3059 lm_root[0] =
__pa(vcpu->
arch.mmu.pae_root) | pm_mask;
3061 vcpu->
arch.mmu.lm_root = lm_root;
3064 vcpu->
arch.mmu.root_hpa =
__pa(vcpu->
arch.mmu.lm_root);
3070 static int mmu_alloc_roots(
struct kvm_vcpu *vcpu)
3072 if (vcpu->
arch.mmu.direct_map)
3073 return mmu_alloc_direct_roots(vcpu);
3075 return mmu_alloc_shadow_roots(vcpu);
3078 static void mmu_sync_roots(
struct kvm_vcpu *vcpu)
3083 if (vcpu->
arch.mmu.direct_map)
3089 vcpu_clear_mmio_info(vcpu, ~0ul);
3093 sp = page_header(root);
3094 mmu_sync_children(vcpu, sp);
3098 for (i = 0; i < 4; ++
i) {
3103 sp = page_header(root);
3104 mmu_sync_children(vcpu, sp);
3112 spin_lock(&vcpu->
kvm->mmu_lock);
3113 mmu_sync_roots(vcpu);
3114 spin_unlock(&vcpu->
kvm->mmu_lock);
3131 return vcpu->
arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3134 static bool quickly_check_mmio_pf(
struct kvm_vcpu *vcpu,
u64 addr,
bool direct)
3137 return vcpu_match_mmio_gpa(vcpu, addr);
3139 return vcpu_match_mmio_gva(vcpu, addr);
3152 static bool check_direct_spte_mmio_pf(
u64 spte)
3154 return __check_direct_spte_mmio_pf(spte);
3157 static u64 walk_shadow_page_get_mmio_spte(
struct kvm_vcpu *vcpu,
u64 addr)
3162 walk_shadow_page_lockless_begin(vcpu);
3164 if (!is_shadow_present_pte(spte))
3166 walk_shadow_page_lockless_end(vcpu);
3180 if (quickly_check_mmio_pf(vcpu, addr, direct))
3183 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3185 if (is_mmio_spte(spte)) {
3186 gfn_t gfn = get_mmio_spte_gfn(spte);
3187 unsigned access = get_mmio_spte_access(spte);
3192 trace_handle_mmio_page_fault(addr, gfn, access);
3193 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3201 if (direct && !check_direct_spte_mmio_pf(spte))
3212 static int handle_mmio_page_fault(
struct kvm_vcpu *vcpu,
u64 addr,
3213 u32 error_code,
bool direct)
3222 static int nonpaging_page_fault(
struct kvm_vcpu *vcpu,
gva_t gva,
3223 u32 error_code,
bool prefault)
3228 pgprintk(
"%s: gva %lx error %x\n", __func__, gva, error_code);
3231 return handle_mmio_page_fault(vcpu, gva, error_code,
true);
3233 r = mmu_topup_memory_caches(vcpu);
3242 return nonpaging_map(vcpu, gva & PAGE_MASK,
3243 error_code, gfn, prefault);
3252 arch.direct_map = vcpu->
arch.mmu.direct_map;
3253 arch.cr3 = vcpu->
arch.mmu.get_cr3(vcpu);
3258 static bool can_do_async_pf(
struct kvm_vcpu *vcpu)
3261 kvm_event_needs_reinjection(vcpu)))
3267 static bool try_async_pf(
struct kvm_vcpu *vcpu,
bool prefault,
gfn_t gfn,
3277 if (!prefault && can_do_async_pf(vcpu)) {
3278 trace_kvm_try_async_get_page(gva, gfn);
3280 trace_kvm_async_pf_doublefault(gva, gfn);
3283 }
else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3292 static int tdp_page_fault(
struct kvm_vcpu *vcpu,
gva_t gpa,
u32 error_code,
3300 unsigned long mmu_seq;
3307 if (
unlikely(error_code & PFERR_RSVD_MASK))
3308 return handle_mmio_page_fault(vcpu, gpa, error_code,
true);
3310 r = mmu_topup_memory_caches(vcpu);
3314 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3315 if (
likely(!force_pt_level)) {
3316 level = mapping_level(vcpu, gfn);
3321 if (fast_page_fault(vcpu, gpa, level, error_code))
3324 mmu_seq = vcpu->
kvm->mmu_notifier_seq;
3327 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3330 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn,
ACC_ALL, &r))
3333 spin_lock(&vcpu->
kvm->mmu_lock);
3334 if (mmu_notifier_retry(vcpu, mmu_seq))
3336 kvm_mmu_free_some_pages(vcpu);
3337 if (
likely(!force_pt_level))
3338 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3339 r = __direct_map(vcpu, gpa, write, map_writable,
3340 level, gfn, pfn, prefault);
3341 spin_unlock(&vcpu->
kvm->mmu_lock);
3346 spin_unlock(&vcpu->
kvm->mmu_lock);
3351 static void nonpaging_free(
struct kvm_vcpu *vcpu)
3353 mmu_free_roots(vcpu);
3356 static int nonpaging_init_context(
struct kvm_vcpu *vcpu,
3359 context->
new_cr3 = nonpaging_new_cr3;
3362 context->
free = nonpaging_free;
3363 context->
sync_page = nonpaging_sync_page;
3364 context->
invlpg = nonpaging_invlpg;
3370 context->
nx =
false;
3376 ++vcpu->
stat.tlb_flush;
3380 static void paging_new_cr3(
struct kvm_vcpu *vcpu)
3382 pgprintk(
"%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3383 mmu_free_roots(vcpu);
3386 static unsigned long get_cr3(
struct kvm_vcpu *vcpu)
3388 return kvm_read_cr3(vcpu);
3391 static void inject_page_fault(
struct kvm_vcpu *vcpu,
3394 vcpu->
arch.mmu.inject_page_fault(vcpu, fault);
3397 static void paging_free(
struct kvm_vcpu *vcpu)
3399 nonpaging_free(vcpu);
3402 static bool is_rsvd_bits_set(
struct kvm_mmu *mmu,
u64 gpte,
int level)
3406 bit7 = (gpte >> 7) & 1;
3410 static inline void protect_clean_gpte(
unsigned *access,
unsigned gpte)
3416 mask = (unsigned)~ACC_WRITE_MASK;
3422 static bool sync_mmio_spte(
u64 *sptep,
gfn_t gfn,
unsigned access,
3425 if (
unlikely(is_mmio_spte(*sptep))) {
3426 if (gfn != get_mmio_spte_gfn(*sptep)) {
3427 mmu_spte_clear_no_track(sptep);
3432 mark_mmio_spte(sptep, gfn, access);
3439 static inline unsigned gpte_access(
struct kvm_vcpu *vcpu,
u64 gpte)
3449 static inline bool is_last_gpte(
struct kvm_mmu *mmu,
unsigned level,
unsigned gpte)
3466 static void reset_rsvds_bits_mask(
struct kvm_vcpu *vcpu,
3470 u64 exb_bit_rsvd = 0;
3473 exb_bit_rsvd = rsvd_bits(63, 63);
3481 if (!is_pse(vcpu)) {
3486 if (is_cpuid_PSE36())
3495 rsvd_bits(maxphyaddr, 63) |
3496 rsvd_bits(7, 8) | rsvd_bits(1, 2);
3498 rsvd_bits(maxphyaddr, 62);
3500 rsvd_bits(maxphyaddr, 62);
3502 rsvd_bits(maxphyaddr, 62) |
3508 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3510 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3512 rsvd_bits(maxphyaddr, 51);
3514 rsvd_bits(maxphyaddr, 51);
3517 rsvd_bits(maxphyaddr, 51) |
3520 rsvd_bits(maxphyaddr, 51) |
3527 static void update_permission_bitmask(
struct kvm_vcpu *vcpu,
struct kvm_mmu *mmu)
3531 bool fault,
x,
w,
u, wf, uf, ff, smep;
3540 for (bit = 0; bit < 8; ++
bit) {
3548 w |= !is_write_protection(vcpu) && !uf;
3550 x &= !(smep && u && !uf);
3552 fault = (ff && !
x) || (uf && !u) || (wf && !
w);
3553 map |= fault <<
bit;
3559 static void update_last_pte_bitmap(
struct kvm_vcpu *vcpu,
struct kvm_mmu *mmu)
3563 const unsigned ps_set_index = 1 << 2;
3568 map = 1 | (1 << ps_set_index);
3572 map |= 1 << (ps_set_index | (level - 1));
3577 static int paging64_init_context_common(
struct kvm_vcpu *vcpu,
3581 context->
nx = is_nx(vcpu);
3584 reset_rsvds_bits_mask(vcpu, context);
3585 update_permission_bitmask(vcpu, context);
3586 update_last_pte_bitmap(vcpu, context);
3589 context->
new_cr3 = paging_new_cr3;
3592 context->
sync_page = paging64_sync_page;
3593 context->
invlpg = paging64_invlpg;
3595 context->
free = paging_free;
3602 static int paging64_init_context(
struct kvm_vcpu *vcpu,
3608 static int paging32_init_context(
struct kvm_vcpu *vcpu,
3611 context->
nx =
false;
3614 reset_rsvds_bits_mask(vcpu, context);
3615 update_permission_bitmask(vcpu, context);
3616 update_last_pte_bitmap(vcpu, context);
3618 context->
new_cr3 = paging_new_cr3;
3621 context->
free = paging_free;
3622 context->
sync_page = paging32_sync_page;
3623 context->
invlpg = paging32_invlpg;
3631 static int paging32E_init_context(
struct kvm_vcpu *vcpu,
3637 static int init_kvm_tdp_mmu(
struct kvm_vcpu *vcpu)
3642 context->
new_cr3 = nonpaging_new_cr3;
3644 context->
free = nonpaging_free;
3645 context->
sync_page = nonpaging_sync_page;
3646 context->
invlpg = nonpaging_invlpg;
3656 if (!is_paging(vcpu)) {
3657 context->
nx =
false;
3660 }
else if (is_long_mode(vcpu)) {
3661 context->
nx = is_nx(vcpu);
3663 reset_rsvds_bits_mask(vcpu, context);
3665 }
else if (is_pae(vcpu)) {
3666 context->
nx = is_nx(vcpu);
3668 reset_rsvds_bits_mask(vcpu, context);
3671 context->
nx =
false;
3673 reset_rsvds_bits_mask(vcpu, context);
3677 update_permission_bitmask(vcpu, context);
3678 update_last_pte_bitmap(vcpu, context);
3690 if (!is_paging(vcpu))
3691 r = nonpaging_init_context(vcpu, context);
3692 else if (is_long_mode(vcpu))
3693 r = paging64_init_context(vcpu, context);
3694 else if (is_pae(vcpu))
3695 r = paging32E_init_context(vcpu, context);
3697 r = paging32_init_context(vcpu, context);
3699 vcpu->
arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3700 vcpu->
arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3701 vcpu->
arch.mmu.base_role.smep_andnot_wp
3702 = smep && !is_write_protection(vcpu);
3708 static int init_kvm_softmmu(
struct kvm_vcpu *vcpu)
3714 vcpu->
arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3720 static int init_kvm_nested_mmu(
struct kvm_vcpu *vcpu)
3722 struct kvm_mmu *g_context = &vcpu->
arch.nested_mmu;
3734 if (!is_paging(vcpu)) {
3735 g_context->
nx =
false;
3737 g_context->
gva_to_gpa = nonpaging_gva_to_gpa_nested;
3738 }
else if (is_long_mode(vcpu)) {
3739 g_context->
nx = is_nx(vcpu);
3741 reset_rsvds_bits_mask(vcpu, g_context);
3742 g_context->
gva_to_gpa = paging64_gva_to_gpa_nested;
3743 }
else if (is_pae(vcpu)) {
3744 g_context->
nx = is_nx(vcpu);
3746 reset_rsvds_bits_mask(vcpu, g_context);
3747 g_context->
gva_to_gpa = paging64_gva_to_gpa_nested;
3749 g_context->
nx =
false;
3751 reset_rsvds_bits_mask(vcpu, g_context);
3752 g_context->
gva_to_gpa = paging32_gva_to_gpa_nested;
3755 update_permission_bitmask(vcpu, g_context);
3756 update_last_pte_bitmap(vcpu, g_context);
3761 static int init_kvm_mmu(
struct kvm_vcpu *vcpu)
3763 if (mmu_is_nested(vcpu))
3764 return init_kvm_nested_mmu(vcpu);
3766 return init_kvm_tdp_mmu(vcpu);
3768 return init_kvm_softmmu(vcpu);
3771 static void destroy_kvm_mmu(
struct kvm_vcpu *vcpu)
3776 vcpu->
arch.mmu.free(vcpu);
3781 destroy_kvm_mmu(vcpu);
3782 return init_kvm_mmu(vcpu);
3790 r = mmu_topup_memory_caches(vcpu);
3793 r = mmu_alloc_roots(vcpu);
3794 spin_lock(&vcpu->
kvm->mmu_lock);
3795 mmu_sync_roots(vcpu);
3796 spin_unlock(&vcpu->
kvm->mmu_lock);
3800 vcpu->
arch.mmu.set_cr3(vcpu, vcpu->
arch.mmu.root_hpa);
3808 mmu_free_roots(vcpu);
3812 static void mmu_pte_write_new_pte(
struct kvm_vcpu *vcpu,
3817 ++vcpu->
kvm->stat.mmu_pde_zapped;
3821 ++vcpu->
kvm->stat.mmu_pte_updated;
3822 vcpu->
arch.mmu.update_pte(vcpu, sp, spte,
new);
3825 static bool need_remote_flush(
u64 old,
u64 new)
3827 if (!is_shadow_present_pte(old))
3829 if (!is_shadow_present_pte(
new))
3838 static void mmu_pte_write_flush_tlb(
struct kvm_vcpu *vcpu,
bool zap_page,
3839 bool remote_flush,
bool local_flush)
3846 else if (local_flush)
3861 if (is_pae(vcpu) && *bytes == 4) {
3868 new = (
const u8 *)&gentry;
3873 gentry = *(
const u32 *)
new;
3876 gentry = *(
const u64 *)
new;
3890 static bool detect_write_flooding(
struct kvm_mmu_page *sp)
3909 unsigned offset, pte_size, misaligned;
3911 pgprintk(
"misaligned: gpa %llx bytes %d role %x\n",
3921 if (!(offset & (pte_size - 1)) && bytes == 1)
3924 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3925 misaligned |= bytes < 4;
3952 page_offset &= ~PAGE_MASK;
3957 spte = &sp->
spt[page_offset /
sizeof(*spte)];
3962 const u8 *
new,
int bytes)
3971 bool remote_flush, local_flush, zap_page;
3980 zap_page = remote_flush = local_flush =
false;
3982 pgprintk(
"%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3984 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa,
new, &bytes);
3991 mmu_topup_memory_caches(vcpu);
3993 spin_lock(&vcpu->
kvm->mmu_lock);
3994 ++vcpu->
kvm->stat.mmu_pte_write;
3999 if (detect_write_misaligned(sp, gpa, bytes) ||
4000 detect_write_flooding(sp)) {
4001 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->
kvm, sp,
4003 ++vcpu->
kvm->stat.mmu_flooded;
4007 spte = get_written_sptes(sp, gpa, &npte);
4014 mmu_page_zap_pte(vcpu->
kvm, sp, spte);
4017 & mask.
word) && rmap_can_add(vcpu))
4018 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4019 if (!remote_flush && need_remote_flush(entry, *spte))
4020 remote_flush =
true;
4024 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4025 kvm_mmu_commit_zap_page(vcpu->
kvm, &invalid_list);
4027 spin_unlock(&vcpu->
kvm->mmu_lock);
4035 if (vcpu->
arch.mmu.direct_map)
4051 !list_empty(&vcpu->
kvm->arch.active_mmu_pages)) {
4056 kvm_mmu_prepare_zap_page(vcpu->
kvm, sp, &invalid_list);
4057 ++vcpu->
kvm->stat.mmu_recycled;
4059 kvm_mmu_commit_zap_page(vcpu->
kvm, &invalid_list);
4062 static bool is_mmio_page_fault(
struct kvm_vcpu *vcpu,
gva_t addr)
4064 if (vcpu->
arch.mmu.direct_map || mmu_is_nested(vcpu))
4065 return vcpu_match_mmio_gpa(vcpu, addr);
4067 return vcpu_match_mmio_gva(vcpu, addr);
4071 void *
insn,
int insn_len)
4076 r = vcpu->
arch.mmu.page_fault(vcpu, cr2, error_code,
false);
4085 if (is_mmio_page_fault(vcpu, cr2))
4094 ++vcpu->
stat.mmio_exits;
4108 vcpu->
arch.mmu.invlpg(vcpu, gva);
4110 ++vcpu->
stat.invlpg;
4126 static void free_mmu_pages(
struct kvm_vcpu *vcpu)
4129 if (vcpu->
arch.mmu.lm_root !=
NULL)
4133 static int alloc_mmu_pages(
struct kvm_vcpu *vcpu)
4150 for (i = 0; i < 4; ++
i)
4160 vcpu->
arch.walk_mmu = &vcpu->
arch.mmu;
4162 vcpu->
arch.mmu.translate_gpa = translate_gpa;
4165 return alloc_mmu_pages(vcpu);
4173 return init_kvm_mmu(vcpu);
4185 if (!
test_bit(slot, sp->slot_bitmap))
4190 if (!is_shadow_present_pte(pt[i]) ||
4194 spte_write_protect(kvm, &pt[i], &flush,
false);
4208 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4211 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4215 static void kvm_mmu_remove_some_alloc_mmu_pages(
struct kvm *kvm,
4220 if (list_empty(&kvm->
arch.active_mmu_pages))
4225 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4233 if (nr_to_scan == 0)
4256 if (!kvm->
arch.n_used_mmu_pages)
4259 idx = srcu_read_lock(&kvm->
srcu);
4262 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4263 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4266 srcu_read_unlock(&kvm->
srcu, idx);
4275 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4278 static struct shrinker mmu_shrinker = {
4279 .shrink = mmu_shrink,
4283 static void mmu_destroy_caches(
void)
4285 if (pte_list_desc_cache)
4287 if (mmu_page_header_cache)
4296 if (!pte_list_desc_cache)
4302 if (!mmu_page_header_cache)
4305 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4313 mmu_destroy_caches();
4322 unsigned int nr_mmu_pages;
4323 unsigned int nr_pages = 0;
4330 nr_pages += memslot->
npages;
4333 nr_mmu_pages =
max(nr_mmu_pages,
4336 return nr_mmu_pages;
4345 walk_shadow_page_lockless_begin(vcpu);
4347 sptes[iterator.
level-1] = spte;
4349 if (!is_shadow_present_pte(spte))
4352 walk_shadow_page_lockless_end(vcpu);
4362 destroy_kvm_mmu(vcpu);
4363 free_mmu_pages(vcpu);
4364 mmu_free_memory_caches(vcpu);
4369 mmu_destroy_caches();
4372 mmu_audit_disable();