Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ccio-dma.c
Go to the documentation of this file.
1 /*
2 ** ccio-dma.c:
3 ** DMA management routines for first generation cache-coherent machines.
4 ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5 **
6 ** (c) Copyright 2000 Grant Grundler
7 ** (c) Copyright 2000 Ryan Bradetich
8 ** (c) Copyright 2000 Hewlett-Packard Company
9 **
10 ** This program is free software; you can redistribute it and/or modify
11 ** it under the terms of the GNU General Public License as published by
12 ** the Free Software Foundation; either version 2 of the License, or
13 ** (at your option) any later version.
14 **
15 **
16 ** "Real Mode" operation refers to U2/Uturn chip operation.
17 ** U2/Uturn were designed to perform coherency checks w/o using
18 ** the I/O MMU - basically what x86 does.
19 **
20 ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21 ** CVSROOT=:pserver:[email protected]:/cvsroot/linux-parisc
22 ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
23 **
24 ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
25 **
26 ** Drawbacks of using Real Mode are:
27 ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28 ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29 ** o Ability to do scatter/gather in HW is lost.
30 ** o Doesn't work under PCX-U/U+ machines since they didn't follow
31 ** the coherency design originally worked out. Only PCX-W does.
32 */
33 
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/pci.h>
42 #include <linux/reboot.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/scatterlist.h>
46 #include <linux/iommu-helper.h>
47 #include <linux/export.h>
48 
49 #include <asm/byteorder.h>
50 #include <asm/cache.h> /* for L1_CACHE_BYTES */
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 #include <asm/dma.h>
54 #include <asm/io.h>
55 #include <asm/hardware.h> /* for register_module() */
56 #include <asm/parisc-device.h>
57 
58 /*
59 ** Choose "ccio" since that's what HP-UX calls it.
60 ** Make it easier for folks to migrate from one to the other :^)
61 */
62 #define MODULE_NAME "ccio"
63 
64 #undef DEBUG_CCIO_RES
65 #undef DEBUG_CCIO_RUN
66 #undef DEBUG_CCIO_INIT
67 #undef DEBUG_CCIO_RUN_SG
68 
69 #ifdef CONFIG_PROC_FS
70 /* depends on proc fs support. But costs CPU performance. */
71 #undef CCIO_COLLECT_STATS
72 #endif
73 
74 #include <asm/runway.h> /* for proc_runway_root */
75 
76 #ifdef DEBUG_CCIO_INIT
77 #define DBG_INIT(x...) printk(x)
78 #else
79 #define DBG_INIT(x...)
80 #endif
81 
82 #ifdef DEBUG_CCIO_RUN
83 #define DBG_RUN(x...) printk(x)
84 #else
85 #define DBG_RUN(x...)
86 #endif
87 
88 #ifdef DEBUG_CCIO_RES
89 #define DBG_RES(x...) printk(x)
90 #else
91 #define DBG_RES(x...)
92 #endif
93 
94 #ifdef DEBUG_CCIO_RUN_SG
95 #define DBG_RUN_SG(x...) printk(x)
96 #else
97 #define DBG_RUN_SG(x...)
98 #endif
99 
100 #define CCIO_INLINE inline
101 #define WRITE_U32(value, addr) __raw_writel(value, addr)
102 #define READ_U32(addr) __raw_readl(addr)
103 
104 #define U2_IOA_RUNWAY 0x580
105 #define U2_BC_GSC 0x501
106 #define UTURN_IOA_RUNWAY 0x581
107 #define UTURN_BC_GSC 0x502
108 
109 #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
110 #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
111 #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
112 
114  /* Runway Supervisory Set */
116  uint32_t io_command; /* Offset 12 */
117  uint32_t io_status; /* Offset 13 */
118  uint32_t io_control; /* Offset 14 */
120 
121  /* Runway Auxiliary Register Set */
122  uint32_t io_err_resp; /* Offset 0 */
123  uint32_t io_err_info; /* Offset 1 */
124  uint32_t io_err_req; /* Offset 2 */
125  uint32_t io_err_resp_hi; /* Offset 3 */
126  uint32_t io_tlb_entry_m; /* Offset 4 */
127  uint32_t io_tlb_entry_l; /* Offset 5 */
129  uint32_t io_pdir_base; /* Offset 7 */
130  uint32_t io_io_low_hv; /* Offset 8 */
131  uint32_t io_io_high_hv; /* Offset 9 */
133  uint32_t io_chain_id_mask; /* Offset 11 */
135  uint32_t io_io_low; /* Offset 14 */
136  uint32_t io_io_high; /* Offset 15 */
137 };
138 
139 /*
140 ** IOA Registers
141 ** -------------
142 **
143 ** Runway IO_CONTROL Register (+0x38)
144 **
145 ** The Runway IO_CONTROL register controls the forwarding of transactions.
146 **
147 ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
148 ** | HV | TLB | reserved | HV | mode | reserved |
149 **
150 ** o mode field indicates the address translation of transactions
151 ** forwarded from Runway to GSC+:
152 ** Mode Name Value Definition
153 ** Off (default) 0 Opaque to matching addresses.
154 ** Include 1 Transparent for matching addresses.
155 ** Peek 3 Map matching addresses.
156 **
157 ** + "Off" mode: Runway transactions which match the I/O range
158 ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
159 ** + "Include" mode: all addresses within the I/O range specified
160 ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
161 ** forwarded. This is the I/O Adapter's normal operating mode.
162 ** + "Peek" mode: used during system configuration to initialize the
163 ** GSC+ bus. Runway Write_Shorts in the address range specified by
164 ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
165 ** *AND* the GSC+ address is remapped to the Broadcast Physical
166 ** Address space by setting the 14 high order address bits of the
167 ** 32 bit GSC+ address to ones.
168 **
169 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
170 ** "Real" mode is the poweron default.
171 **
172 ** TLB Mode Value Description
173 ** Real 0 No TLB translation. Address is directly mapped and the
174 ** virtual address is composed of selected physical bits.
175 ** Error 1 Software fills the TLB manually.
176 ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
177 **
178 **
179 ** IO_IO_LOW_HV +0x60 (HV dependent)
180 ** IO_IO_HIGH_HV +0x64 (HV dependent)
181 ** IO_IO_LOW +0x78 (Architected register)
182 ** IO_IO_HIGH +0x7c (Architected register)
183 **
184 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
185 ** I/O Adapter address space, respectively.
186 **
187 ** 0 ... 7 | 8 ... 15 | 16 ... 31 |
188 ** 11111111 | 11111111 | address |
189 **
190 ** Each LOW/HIGH pair describes a disjoint address space region.
191 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
192 ** with both sets of LOW/HIGH registers. If the address is in the range
193 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
194 ** for forwarded to the respective GSC+ bus.
195 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
196 ** an address space region.
197 **
198 ** In order for a Runway address to reside within GSC+ extended address space:
199 ** Runway Address [0:7] must identically compare to 8'b11111111
200 ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
201 ** Runway Address [12:23] must be greater than or equal to
202 ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
203 ** Runway Address [24:39] is not used in the comparison.
204 **
205 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
206 ** as follows:
207 ** GSC+ Address[0:3] 4'b1111
208 ** GSC+ Address[4:29] Runway Address[12:37]
209 ** GSC+ Address[30:31] 2'b00
210 **
211 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
212 ** is interrogated and address space is defined. The operating system will
213 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
214 ** the PDC initialization. However, the hardware version dependent IO_IO_LOW
215 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
216 **
217 ** Writes to both sets of registers will take effect immediately, bypassing
218 ** the queues, which ensures that subsequent Runway transactions are checked
219 ** against the updated bounds values. However reads are queued, introducing
220 ** the possibility of a read being bypassed by a subsequent write to the same
221 ** register. This sequence can be avoided by having software wait for read
222 ** returns before issuing subsequent writes.
223 */
224 
225 struct ioc {
226  struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */
227  u8 *res_map; /* resource map, bit == pdir entry */
228  u64 *pdir_base; /* physical base address */
229  u32 pdir_size; /* bytes, function of IOV Space size */
230  u32 res_hint; /* next available IOVP -
231  circular search */
232  u32 res_size; /* size of resource map in bytes */
234 
235 #ifdef CCIO_COLLECT_STATS
236 #define CCIO_SEARCH_SAMPLE 0x100
237  unsigned long avg_search[CCIO_SEARCH_SAMPLE];
238  unsigned long avg_idx; /* current index into avg_search */
239  unsigned long used_pages;
240  unsigned long msingle_calls;
241  unsigned long msingle_pages;
242  unsigned long msg_calls;
243  unsigned long msg_pages;
244  unsigned long usingle_calls;
245  unsigned long usingle_pages;
246  unsigned long usg_calls;
247  unsigned long usg_pages;
248 #endif
249  unsigned short cujo20_bug;
250 
251  /* STUFF We don't need in performance path */
252  u32 chainid_shift; /* specify bit location of chain_id */
253  struct ioc *next; /* Linked list of discovered iocs */
254  const char *name; /* device name from firmware */
255  unsigned int hw_path; /* the hardware path this ioc is associatd with */
256  struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
257  struct resource mmio_region[2]; /* The "routed" MMIO regions */
258 };
259 
260 static struct ioc *ioc_list;
261 static int ioc_count;
262 
263 /**************************************************************
264 *
265 * I/O Pdir Resource Management
266 *
267 * Bits set in the resource map are in use.
268 * Each bit can represent a number of pages.
269 * LSbs represent lower addresses (IOVA's).
270 *
271 * This was was copied from sba_iommu.c. Don't try to unify
272 * the two resource managers unless a way to have different
273 * allocation policies is also adjusted. We'd like to avoid
274 * I/O TLB thrashing by having resource allocation policy
275 * match the I/O TLB replacement policy.
276 *
277 ***************************************************************/
278 #define IOVP_SIZE PAGE_SIZE
279 #define IOVP_SHIFT PAGE_SHIFT
280 #define IOVP_MASK PAGE_MASK
281 
282 /* Convert from IOVP to IOVA and vice versa. */
283 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
284 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
285 
286 #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
287 #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
288 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
289 
290 /*
291 ** Don't worry about the 150% average search length on a miss.
292 ** If the search wraps around, and passes the res_hint, it will
293 ** cause the kernel to panic anyhow.
294 */
295 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
296  for(; res_ptr < res_end; ++res_ptr) { \
297  int ret;\
298  unsigned int idx;\
299  idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
300  ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
301  if ((0 == (*res_ptr & mask)) && !ret) { \
302  *res_ptr |= mask; \
303  res_idx = idx;\
304  ioc->res_hint = res_idx + (size >> 3); \
305  goto resource_found; \
306  } \
307  }
308 
309 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
310  u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
311  u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
312  CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
313  res_ptr = (u##size *)&(ioc)->res_map[0]; \
314  CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
315 
316 /*
317 ** Find available bit in this ioa's resource map.
318 ** Use a "circular" search:
319 ** o Most IOVA's are "temporary" - avg search time should be small.
320 ** o keep a history of what happened for debugging
321 ** o KISS.
322 **
323 ** Perf optimizations:
324 ** o search for log2(size) bits at a time.
325 ** o search for available resource bits using byte/word/whatever.
326 ** o use different search for "large" (eg > 4 pages) or "very large"
327 ** (eg > 16 pages) mappings.
328 */
329 
339 static int
340 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
341 {
342  unsigned int pages_needed = size >> IOVP_SHIFT;
343  unsigned int res_idx;
344  unsigned long boundary_size;
345 #ifdef CCIO_COLLECT_STATS
346  unsigned long cr_start = mfctl(16);
347 #endif
348 
349  BUG_ON(pages_needed == 0);
350  BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
351 
352  DBG_RES("%s() size: %d pages_needed %d\n",
353  __func__, size, pages_needed);
354 
355  /*
356  ** "seek and ye shall find"...praying never hurts either...
357  ** ggg sacrifices another 710 to the computer gods.
358  */
359 
360  boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
361  1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
362 
363  if (pages_needed <= 8) {
364  /*
365  * LAN traffic will not thrash the TLB IFF the same NIC
366  * uses 8 adjacent pages to map separate payload data.
367  * ie the same byte in the resource bit map.
368  */
369 #if 0
370  /* FIXME: bit search should shift it's way through
371  * an unsigned long - not byte at a time. As it is now,
372  * we effectively allocate this byte to this mapping.
373  */
374  unsigned long mask = ~(~0UL >> pages_needed);
375  CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
376 #else
377  CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
378 #endif
379  } else if (pages_needed <= 16) {
380  CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
381  } else if (pages_needed <= 32) {
382  CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
383 #ifdef __LP64__
384  } else if (pages_needed <= 64) {
385  CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
386 #endif
387  } else {
388  panic("%s: %s() Too many pages to map. pages_needed: %u\n",
389  __FILE__, __func__, pages_needed);
390  }
391 
392  panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
393  __func__);
394 
395 resource_found:
396 
397  DBG_RES("%s() res_idx %d res_hint: %d\n",
398  __func__, res_idx, ioc->res_hint);
399 
400 #ifdef CCIO_COLLECT_STATS
401  {
402  unsigned long cr_end = mfctl(16);
403  unsigned long tmp = cr_end - cr_start;
404  /* check for roll over */
405  cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
406  }
407  ioc->avg_search[ioc->avg_idx++] = cr_start;
408  ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
409  ioc->used_pages += pages_needed;
410 #endif
411  /*
412  ** return the bit address.
413  */
414  return res_idx << 3;
415 }
416 
417 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
418  u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
419  BUG_ON((*res_ptr & mask) != mask); \
420  *res_ptr &= ~(mask);
421 
431 static void
432 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
433 {
434  unsigned long iovp = CCIO_IOVP(iova);
435  unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
436 
437  BUG_ON(pages_mapped == 0);
438  BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
439  BUG_ON(pages_mapped > BITS_PER_LONG);
440 
441  DBG_RES("%s(): res_idx: %d pages_mapped %d\n",
442  __func__, res_idx, pages_mapped);
443 
444 #ifdef CCIO_COLLECT_STATS
445  ioc->used_pages -= pages_mapped;
446 #endif
447 
448  if(pages_mapped <= 8) {
449 #if 0
450  /* see matching comments in alloc_range */
451  unsigned long mask = ~(~0UL >> pages_mapped);
452  CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
453 #else
454  CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
455 #endif
456  } else if(pages_mapped <= 16) {
457  CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
458  } else if(pages_mapped <= 32) {
459  CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
460 #ifdef __LP64__
461  } else if(pages_mapped <= 64) {
462  CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
463 #endif
464  } else {
465  panic("%s:%s() Too many pages to unmap.\n", __FILE__,
466  __func__);
467  }
468 }
469 
470 /****************************************************************
471 **
472 ** CCIO dma_ops support routines
473 **
474 *****************************************************************/
475 
476 typedef unsigned long space_t;
477 #define KERNEL_SPACE 0
478 
479 /*
480 ** DMA "Page Type" and Hints
481 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
482 ** set for subcacheline DMA transfers since we don't want to damage the
483 ** other part of a cacheline.
484 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
485 ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
486 ** data can avoid this if the mapping covers full cache lines.
487 ** o STOP_MOST is needed for atomicity across cachelines.
488 ** Apparently only "some EISA devices" need this.
489 ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
490 ** to use this hint iff the EISA devices needs this feature.
491 ** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
492 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
493 ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
494 ** device can be fetched and multiply DMA streams will thrash the
495 ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
496 ** and Invalidation of Prefetch Entries".
497 **
498 ** FIXME: the default hints need to be per GSC device - not global.
499 **
500 ** HP-UX dorks: linux device driver programming model is totally different
501 ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
502 ** do special things to work on non-coherent platforms...linux has to
503 ** be much more careful with this.
504 */
505 #define IOPDIR_VALID 0x01UL
506 #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
507 #ifdef CONFIG_EISA
508 #define HINT_STOP_MOST 0x04UL /* LSL support */
509 #else
510 #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
511 #endif
512 #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
513 #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
514 
515 
516 /*
517 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
518 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
519 ** when it passes in BIDIRECTIONAL flag.
520 */
521 static u32 hint_lookup[] = {
525 };
526 
556 static void CCIO_INLINE
557 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
558  unsigned long hints)
559 {
560  register unsigned long pa;
561  register unsigned long ci; /* coherent index */
562 
563  /* We currently only support kernel addresses */
564  BUG_ON(sid != KERNEL_SPACE);
565 
566  mtsp(sid,1);
567 
568  /*
569  ** WORD 1 - low order word
570  ** "hints" parm includes the VALID bit!
571  ** "dep" clobbers the physical address offset bits as well.
572  */
573  pa = virt_to_phys(vba);
574  asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
575  ((u32 *)pdir_ptr)[1] = (u32) pa;
576 
577  /*
578  ** WORD 0 - high order word
579  */
580 
581 #ifdef __LP64__
582  /*
583  ** get bits 12:15 of physical address
584  ** shift bits 16:31 of physical address
585  ** and deposit them
586  */
587  asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
588  asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
589  asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
590 #else
591  pa = 0;
592 #endif
593  /*
594  ** get CPU coherency index bits
595  ** Grab virtual index [0:11]
596  ** Deposit virt_idx bits into I/O PDIR word
597  */
598  asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
599  asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
600  asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
601 
602  ((u32 *)pdir_ptr)[0] = (u32) pa;
603 
604 
605  /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
606  ** PCX-U/U+ do. (eg C200/C240)
607  ** PCX-T'? Don't know. (eg C110 or similar K-class)
608  **
609  ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
610  ** Hopefully we can patch (NOP) these out at boot time somehow.
611  **
612  ** "Since PCX-U employs an offset hash that is incompatible with
613  ** the real mode coherence index generation of U2, the PDIR entry
614  ** must be flushed to memory to retain coherence."
615  */
616  asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
617  asm volatile("sync");
618 }
619 
630 static CCIO_INLINE void
631 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
632 {
633  u32 chain_size = 1 << ioc->chainid_shift;
634 
635  iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
636  byte_cnt += chain_size;
637 
638  while(byte_cnt > chain_size) {
639  WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
640  iovp += chain_size;
641  byte_cnt -= chain_size;
642  }
643 }
644 
663 static CCIO_INLINE void
664 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
665 {
666  u32 iovp = (u32)CCIO_IOVP(iova);
667  size_t saved_byte_cnt;
668 
669  /* round up to nearest page size */
670  saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
671 
672  while(byte_cnt > 0) {
673  /* invalidate one page at a time */
674  unsigned int idx = PDIR_INDEX(iovp);
675  char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
676 
677  BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
678  pdir_ptr[7] = 0; /* clear only VALID bit */
679  /*
680  ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
681  ** PCX-U/U+ do. (eg C200/C240)
682  ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
683  **
684  ** Hopefully someone figures out how to patch (NOP) the
685  ** FDC/SYNC out at boot time.
686  */
687  asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
688 
689  iovp += IOVP_SIZE;
690  byte_cnt -= IOVP_SIZE;
691  }
692 
693  asm volatile("sync");
694  ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
695 }
696 
697 /****************************************************************
698 **
699 ** CCIO dma_ops
700 **
701 *****************************************************************/
702 
710 static int
711 ccio_dma_supported(struct device *dev, u64 mask)
712 {
713  if(dev == NULL) {
714  printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
715  BUG();
716  return 0;
717  }
718 
719  /* only support 32-bit devices (ie PCI/GSC) */
720  return (int)(mask == 0xffffffffUL);
721 }
722 
732 static dma_addr_t
733 ccio_map_single(struct device *dev, void *addr, size_t size,
735 {
736  int idx;
737  struct ioc *ioc;
738  unsigned long flags;
739  dma_addr_t iovp;
741  u64 *pdir_start;
742  unsigned long hint = hint_lookup[(int)direction];
743 
744  BUG_ON(!dev);
745  ioc = GET_IOC(dev);
746 
747  BUG_ON(size <= 0);
748 
749  /* save offset bits */
750  offset = ((unsigned long) addr) & ~IOVP_MASK;
751 
752  /* round up to nearest IOVP_SIZE */
753  size = ALIGN(size + offset, IOVP_SIZE);
754  spin_lock_irqsave(&ioc->res_lock, flags);
755 
756 #ifdef CCIO_COLLECT_STATS
757  ioc->msingle_calls++;
758  ioc->msingle_pages += size >> IOVP_SHIFT;
759 #endif
760 
761  idx = ccio_alloc_range(ioc, dev, size);
762  iovp = (dma_addr_t)MKIOVP(idx);
763 
764  pdir_start = &(ioc->pdir_base[idx]);
765 
766  DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
767  __func__, addr, (long)iovp | offset, size);
768 
769  /* If not cacheline aligned, force SAFE_DMA on the whole mess */
770  if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
771  hint |= HINT_SAFE_DMA;
772 
773  while(size > 0) {
774  ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
775 
776  DBG_RUN(" pdir %p %08x%08x\n",
777  pdir_start,
778  (u32) (((u32 *) pdir_start)[0]),
779  (u32) (((u32 *) pdir_start)[1]));
780  ++pdir_start;
781  addr += IOVP_SIZE;
782  size -= IOVP_SIZE;
783  }
784 
785  spin_unlock_irqrestore(&ioc->res_lock, flags);
786 
787  /* form complete address */
788  return CCIO_IOVA(iovp, offset);
789 }
790 
800 static void
801 ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
802  enum dma_data_direction direction)
803 {
804  struct ioc *ioc;
805  unsigned long flags;
806  dma_addr_t offset = iova & ~IOVP_MASK;
807 
808  BUG_ON(!dev);
809  ioc = GET_IOC(dev);
810 
811  DBG_RUN("%s() iovp 0x%lx/%x\n",
812  __func__, (long)iova, size);
813 
814  iova ^= offset; /* clear offset bits */
815  size += offset;
816  size = ALIGN(size, IOVP_SIZE);
817 
818  spin_lock_irqsave(&ioc->res_lock, flags);
819 
820 #ifdef CCIO_COLLECT_STATS
821  ioc->usingle_calls++;
822  ioc->usingle_pages += size >> IOVP_SHIFT;
823 #endif
824 
825  ccio_mark_invalid(ioc, iova, size);
826  ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
827  spin_unlock_irqrestore(&ioc->res_lock, flags);
828 }
829 
838 static void *
839 ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
840 {
841  void *ret;
842 #if 0
843 /* GRANT Need to establish hierarchy for non-PCI devs as well
844 ** and then provide matching gsc_map_xxx() functions for them as well.
845 */
846  if(!hwdev) {
847  /* only support PCI */
848  *dma_handle = 0;
849  return 0;
850  }
851 #endif
852  ret = (void *) __get_free_pages(flag, get_order(size));
853 
854  if (ret) {
855  memset(ret, 0, size);
856  *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
857  }
858 
859  return ret;
860 }
861 
871 static void
872 ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr,
873  dma_addr_t dma_handle)
874 {
875  ccio_unmap_single(dev, dma_handle, size, 0);
876  free_pages((unsigned long)cpu_addr, get_order(size));
877 }
878 
879 /*
880 ** Since 0 is a valid pdir_base index value, can't use that
881 ** to determine if a value is valid or not. Use a flag to indicate
882 ** the SG list entry contains a valid pdir index.
883 */
884 #define PIDE_FLAG 0x80000000UL
885 
886 #ifdef CCIO_COLLECT_STATS
887 #define IOMMU_MAP_STATS
888 #endif
889 #include "iommu-helpers.h"
890 
900 static int
901 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
902  enum dma_data_direction direction)
903 {
904  struct ioc *ioc;
905  int coalesced, filled = 0;
906  unsigned long flags;
907  unsigned long hint = hint_lookup[(int)direction];
908  unsigned long prev_len = 0, current_len = 0;
909  int i;
910 
911  BUG_ON(!dev);
912  ioc = GET_IOC(dev);
913 
914  DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
915 
916  /* Fast path single entry scatterlists. */
917  if (nents == 1) {
918  sg_dma_address(sglist) = ccio_map_single(dev,
919  (void *)sg_virt_addr(sglist), sglist->length,
920  direction);
921  sg_dma_len(sglist) = sglist->length;
922  return 1;
923  }
924 
925  for(i = 0; i < nents; i++)
926  prev_len += sglist[i].length;
927 
928  spin_lock_irqsave(&ioc->res_lock, flags);
929 
930 #ifdef CCIO_COLLECT_STATS
931  ioc->msg_calls++;
932 #endif
933 
934  /*
935  ** First coalesce the chunks and allocate I/O pdir space
936  **
937  ** If this is one DMA stream, we can properly map using the
938  ** correct virtual address associated with each DMA page.
939  ** w/o this association, we wouldn't have coherent DMA!
940  ** Access to the virtual address is what forces a two pass algorithm.
941  */
942  coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
943 
944  /*
945  ** Program the I/O Pdir
946  **
947  ** map the virtual addresses to the I/O Pdir
948  ** o dma_address will contain the pdir index
949  ** o dma_len will contain the number of bytes to map
950  ** o page/offset contain the virtual address.
951  */
952  filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
953 
954  spin_unlock_irqrestore(&ioc->res_lock, flags);
955 
956  BUG_ON(coalesced != filled);
957 
958  DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
959 
960  for (i = 0; i < filled; i++)
961  current_len += sg_dma_len(sglist + i);
962 
963  BUG_ON(current_len != prev_len);
964 
965  return filled;
966 }
967 
977 static void
978 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
979  enum dma_data_direction direction)
980 {
981  struct ioc *ioc;
982 
983  BUG_ON(!dev);
984  ioc = GET_IOC(dev);
985 
986  DBG_RUN_SG("%s() START %d entries, %08lx,%x\n",
987  __func__, nents, sg_virt_addr(sglist), sglist->length);
988 
989 #ifdef CCIO_COLLECT_STATS
990  ioc->usg_calls++;
991 #endif
992 
993  while(sg_dma_len(sglist) && nents--) {
994 
995 #ifdef CCIO_COLLECT_STATS
996  ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
997 #endif
998  ccio_unmap_single(dev, sg_dma_address(sglist),
999  sg_dma_len(sglist), direction);
1000  ++sglist;
1001  }
1002 
1003  DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1004 }
1005 
1006 static struct hppa_dma_ops ccio_ops = {
1007  .dma_supported = ccio_dma_supported,
1008  .alloc_consistent = ccio_alloc_consistent,
1009  .alloc_noncoherent = ccio_alloc_consistent,
1010  .free_consistent = ccio_free_consistent,
1011  .map_single = ccio_map_single,
1012  .unmap_single = ccio_unmap_single,
1013  .map_sg = ccio_map_sg,
1014  .unmap_sg = ccio_unmap_sg,
1015  .dma_sync_single_for_cpu = NULL, /* NOP for U2/Uturn */
1016  .dma_sync_single_for_device = NULL, /* NOP for U2/Uturn */
1017  .dma_sync_sg_for_cpu = NULL, /* ditto */
1018  .dma_sync_sg_for_device = NULL, /* ditto */
1019 };
1020 
1021 #ifdef CONFIG_PROC_FS
1022 static int ccio_proc_info(struct seq_file *m, void *p)
1023 {
1024  int len = 0;
1025  struct ioc *ioc = ioc_list;
1026 
1027  while (ioc != NULL) {
1028  unsigned int total_pages = ioc->res_size << 3;
1029 #ifdef CCIO_COLLECT_STATS
1030  unsigned long avg = 0, min, max;
1031  int j;
1032 #endif
1033 
1034  len += seq_printf(m, "%s\n", ioc->name);
1035 
1036  len += seq_printf(m, "Cujo 2.0 bug : %s\n",
1037  (ioc->cujo20_bug ? "yes" : "no"));
1038 
1039  len += seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
1040  total_pages * 8, total_pages);
1041 
1042 #ifdef CCIO_COLLECT_STATS
1043  len += seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
1044  total_pages - ioc->used_pages, ioc->used_pages,
1045  (int)(ioc->used_pages * 100 / total_pages));
1046 #endif
1047 
1048  len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1049  ioc->res_size, total_pages);
1050 
1051 #ifdef CCIO_COLLECT_STATS
1052  min = max = ioc->avg_search[0];
1053  for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1054  avg += ioc->avg_search[j];
1055  if(ioc->avg_search[j] > max)
1056  max = ioc->avg_search[j];
1057  if(ioc->avg_search[j] < min)
1058  min = ioc->avg_search[j];
1059  }
1060  avg /= CCIO_SEARCH_SAMPLE;
1061  len += seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1062  min, avg, max);
1063 
1064  len += seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
1065  ioc->msingle_calls, ioc->msingle_pages,
1066  (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1067 
1068  /* KLUGE - unmap_sg calls unmap_single for each mapped page */
1069  min = ioc->usingle_calls - ioc->usg_calls;
1070  max = ioc->usingle_pages - ioc->usg_pages;
1071  len += seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
1072  min, max, (int)((max * 1000)/min));
1073 
1074  len += seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
1075  ioc->msg_calls, ioc->msg_pages,
1076  (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1077 
1078  len += seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
1079  ioc->usg_calls, ioc->usg_pages,
1080  (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1081 #endif /* CCIO_COLLECT_STATS */
1082 
1083  ioc = ioc->next;
1084  }
1085 
1086  return 0;
1087 }
1088 
1089 static int ccio_proc_info_open(struct inode *inode, struct file *file)
1090 {
1091  return single_open(file, &ccio_proc_info, NULL);
1092 }
1093 
1094 static const struct file_operations ccio_proc_info_fops = {
1095  .owner = THIS_MODULE,
1096  .open = ccio_proc_info_open,
1097  .read = seq_read,
1098  .llseek = seq_lseek,
1099  .release = single_release,
1100 };
1101 
1102 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1103 {
1104  int len = 0;
1105  struct ioc *ioc = ioc_list;
1106 
1107  while (ioc != NULL) {
1108  u32 *res_ptr = (u32 *)ioc->res_map;
1109  int j;
1110 
1111  for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
1112  if ((j & 7) == 0)
1113  len += seq_puts(m, "\n ");
1114  len += seq_printf(m, "%08x", *res_ptr);
1115  res_ptr++;
1116  }
1117  len += seq_puts(m, "\n\n");
1118  ioc = ioc->next;
1119  break; /* XXX - remove me */
1120  }
1121 
1122  return 0;
1123 }
1124 
1125 static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1126 {
1127  return single_open(file, &ccio_proc_bitmap_info, NULL);
1128 }
1129 
1130 static const struct file_operations ccio_proc_bitmap_fops = {
1131  .owner = THIS_MODULE,
1132  .open = ccio_proc_bitmap_open,
1133  .read = seq_read,
1134  .llseek = seq_lseek,
1135  .release = single_release,
1136 };
1137 #endif /* CONFIG_PROC_FS */
1138 
1146 static struct ioc * ccio_find_ioc(int hw_path)
1147 {
1148  int i;
1149  struct ioc *ioc;
1150 
1151  ioc = ioc_list;
1152  for (i = 0; i < ioc_count; i++) {
1153  if (ioc->hw_path == hw_path)
1154  return ioc;
1155 
1156  ioc = ioc->next;
1157  }
1158 
1159  return NULL;
1160 }
1161 
1169 void * ccio_get_iommu(const struct parisc_device *dev)
1170 {
1171  dev = find_pa_parent_type(dev, HPHW_IOA);
1172  if (!dev)
1173  return NULL;
1174 
1175  return ccio_find_ioc(dev->hw_path);
1176 }
1177 
1178 #define CUJO_20_STEP 0x10000000 /* inc upper nibble */
1179 
1180 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1181  * to/from certain pages. To avoid this happening, we mark these pages
1182  * as `used', and ensure that nothing will try to allocate from them.
1183  */
1184 void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1185 {
1186  unsigned int idx;
1187  struct parisc_device *dev = parisc_parent(cujo);
1188  struct ioc *ioc = ccio_get_iommu(dev);
1189  u8 *res_ptr;
1190 
1191  ioc->cujo20_bug = 1;
1192  res_ptr = ioc->res_map;
1193  idx = PDIR_INDEX(iovp) >> 3;
1194 
1195  while (idx < ioc->res_size) {
1196  res_ptr[idx] |= 0xff;
1197  idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1198  }
1199 }
1200 
1201 #if 0
1202 /* GRANT - is this needed for U2 or not? */
1203 
1204 /*
1205 ** Get the size of the I/O TLB for this I/O MMU.
1206 **
1207 ** If spa_shift is non-zero (ie probably U2),
1208 ** then calculate the I/O TLB size using spa_shift.
1209 **
1210 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1211 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1212 ** I think only Java (K/D/R-class too?) systems don't do this.
1213 */
1214 static int
1215 ccio_get_iotlb_size(struct parisc_device *dev)
1216 {
1217  if (dev->spa_shift == 0) {
1218  panic("%s() : Can't determine I/O TLB size.\n", __func__);
1219  }
1220  return (1 << dev->spa_shift);
1221 }
1222 #else
1223 
1224 /* Uturn supports 256 TLB entries */
1225 #define CCIO_CHAINID_SHIFT 8
1226 #define CCIO_CHAINID_MASK 0xff
1227 #endif /* 0 */
1228 
1229 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1230 static const struct parisc_device_id ccio_tbl[] = {
1231  { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1232  { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1233  { 0, }
1234 };
1235 
1236 static int ccio_probe(struct parisc_device *dev);
1237 
1238 static struct parisc_driver ccio_driver = {
1239  .name = "ccio",
1240  .id_table = ccio_tbl,
1241  .probe = ccio_probe,
1242 };
1243 
1252 static void
1253 ccio_ioc_init(struct ioc *ioc)
1254 {
1255  int i;
1256  unsigned int iov_order;
1257  u32 iova_space_size;
1258 
1259  /*
1260  ** Determine IOVA Space size from memory size.
1261  **
1262  ** Ideally, PCI drivers would register the maximum number
1263  ** of DMA they can have outstanding for each device they
1264  ** own. Next best thing would be to guess how much DMA
1265  ** can be outstanding based on PCI Class/sub-class. Both
1266  ** methods still require some "extra" to support PCI
1267  ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1268  */
1269 
1270  iova_space_size = (u32) (totalram_pages / count_parisc_driver(&ccio_driver));
1271 
1272  /* limit IOVA space size to 1MB-1GB */
1273 
1274  if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1275  iova_space_size = 1 << (20 - PAGE_SHIFT);
1276 #ifdef __LP64__
1277  } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1278  iova_space_size = 1 << (30 - PAGE_SHIFT);
1279 #endif
1280  }
1281 
1282  /*
1283  ** iova space must be log2() in size.
1284  ** thus, pdir/res_map will also be log2().
1285  */
1286 
1287  /* We could use larger page sizes in order to *decrease* the number
1288  ** of mappings needed. (ie 8k pages means 1/2 the mappings).
1289  **
1290  ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1291  ** since the pages must also be physically contiguous - typically
1292  ** this is the case under linux."
1293  */
1294 
1295  iov_order = get_order(iova_space_size << PAGE_SHIFT);
1296 
1297  /* iova_space_size is now bytes, not pages */
1298  iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1299 
1300  ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1301 
1302  BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */
1303 
1304  /* Verify it's a power of two */
1305  BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1306 
1307  DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1308  __func__, ioc->ioc_regs,
1309  (unsigned long) totalram_pages >> (20 - PAGE_SHIFT),
1310  iova_space_size>>20,
1311  iov_order + PAGE_SHIFT);
1312 
1314  get_order(ioc->pdir_size));
1315  if(NULL == ioc->pdir_base) {
1316  panic("%s() could not allocate I/O Page Table\n", __func__);
1317  }
1318  memset(ioc->pdir_base, 0, ioc->pdir_size);
1319 
1320  BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1321  DBG_INIT(" base %p\n", ioc->pdir_base);
1322 
1323  /* resource map size dictated by pdir_size */
1324  ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1325  DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1326 
1328  get_order(ioc->res_size));
1329  if(NULL == ioc->res_map) {
1330  panic("%s() could not allocate resource map\n", __func__);
1331  }
1332  memset(ioc->res_map, 0, ioc->res_size);
1333 
1334  /* Initialize the res_hint to 16 */
1335  ioc->res_hint = 16;
1336 
1337  /* Initialize the spinlock */
1338  spin_lock_init(&ioc->res_lock);
1339 
1340  /*
1341  ** Chainid is the upper most bits of an IOVP used to determine
1342  ** which TLB entry an IOVP will use.
1343  */
1344  ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1345  DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1346 
1347  /*
1348  ** Initialize IOA hardware
1349  */
1351  &ioc->ioc_regs->io_chain_id_mask);
1352 
1354  &ioc->ioc_regs->io_pdir_base);
1355 
1356  /*
1357  ** Go to "Virtual Mode"
1358  */
1359  WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1360 
1361  /*
1362  ** Initialize all I/O TLB entries to 0 (Valid bit off).
1363  */
1364  WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1365  WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1366 
1367  for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1369  &ioc->ioc_regs->io_command);
1370  }
1371 }
1372 
1373 static void __init
1374 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1375 {
1376  int result;
1377 
1378  res->parent = NULL;
1379  res->flags = IORESOURCE_MEM;
1380  /*
1381  * bracing ((signed) ...) are required for 64bit kernel because
1382  * we only want to sign extend the lower 16 bits of the register.
1383  * The upper 16-bits of range registers are hardcoded to 0xffff.
1384  */
1385  res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1386  res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1387  res->name = name;
1388  /*
1389  * Check if this MMIO range is disable
1390  */
1391  if (res->end + 1 == res->start)
1392  return;
1393 
1394  /* On some platforms (e.g. K-Class), we have already registered
1395  * resources for devices reported by firmware. Some are children
1396  * of ccio.
1397  * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1398  */
1399  result = insert_resource(&iomem_resource, res);
1400  if (result < 0) {
1401  printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1402  __func__, (unsigned long)res->start, (unsigned long)res->end);
1403  }
1404 }
1405 
1406 static void __init ccio_init_resources(struct ioc *ioc)
1407 {
1408  struct resource *res = ioc->mmio_region;
1409  char *name = kmalloc(14, GFP_KERNEL);
1410 
1411  snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1412 
1413  ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1414  ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1415 }
1416 
1417 static int new_ioc_area(struct resource *res, unsigned long size,
1418  unsigned long min, unsigned long max, unsigned long align)
1419 {
1420  if (max <= min)
1421  return -EBUSY;
1422 
1423  res->start = (max - size + 1) &~ (align - 1);
1424  res->end = res->start + size;
1425 
1426  /* We might be trying to expand the MMIO range to include
1427  * a child device that has already registered it's MMIO space.
1428  * Use "insert" instead of request_resource().
1429  */
1430  if (!insert_resource(&iomem_resource, res))
1431  return 0;
1432 
1433  return new_ioc_area(res, size, min, max - size, align);
1434 }
1435 
1436 static int expand_ioc_area(struct resource *res, unsigned long size,
1437  unsigned long min, unsigned long max, unsigned long align)
1438 {
1439  unsigned long start, len;
1440 
1441  if (!res->parent)
1442  return new_ioc_area(res, size, min, max, align);
1443 
1444  start = (res->start - size) &~ (align - 1);
1445  len = res->end - start + 1;
1446  if (start >= min) {
1447  if (!adjust_resource(res, start, len))
1448  return 0;
1449  }
1450 
1451  start = res->start;
1452  len = ((size + res->end + align) &~ (align - 1)) - start;
1453  if (start + len <= max) {
1454  if (!adjust_resource(res, start, len))
1455  return 0;
1456  }
1457 
1458  return -EBUSY;
1459 }
1460 
1461 /*
1462  * Dino calls this function. Beware that we may get called on systems
1463  * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1464  * So it's legal to find no parent IOC.
1465  *
1466  * Some other issues: one of the resources in the ioc may be unassigned.
1467  */
1469  struct resource *res, unsigned long size,
1470  unsigned long min, unsigned long max, unsigned long align)
1471 {
1472  struct resource *parent = &iomem_resource;
1473  struct ioc *ioc = ccio_get_iommu(dev);
1474  if (!ioc)
1475  goto out;
1476 
1477  parent = ioc->mmio_region;
1478  if (parent->parent &&
1479  !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1480  return 0;
1481 
1482  if ((parent + 1)->parent &&
1483  !allocate_resource(parent + 1, res, size, min, max, align,
1484  NULL, NULL))
1485  return 0;
1486 
1487  if (!expand_ioc_area(parent, size, min, max, align)) {
1488  __raw_writel(((parent->start)>>16) | 0xffff0000,
1489  &ioc->ioc_regs->io_io_low);
1490  __raw_writel(((parent->end)>>16) | 0xffff0000,
1491  &ioc->ioc_regs->io_io_high);
1492  } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1493  parent++;
1494  __raw_writel(((parent->start)>>16) | 0xffff0000,
1495  &ioc->ioc_regs->io_io_low_hv);
1496  __raw_writel(((parent->end)>>16) | 0xffff0000,
1497  &ioc->ioc_regs->io_io_high_hv);
1498  } else {
1499  return -EBUSY;
1500  }
1501 
1502  out:
1503  return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1504 }
1505 
1506 int ccio_request_resource(const struct parisc_device *dev,
1507  struct resource *res)
1508 {
1509  struct resource *parent;
1510  struct ioc *ioc = ccio_get_iommu(dev);
1511 
1512  if (!ioc) {
1513  parent = &iomem_resource;
1514  } else if ((ioc->mmio_region->start <= res->start) &&
1515  (res->end <= ioc->mmio_region->end)) {
1516  parent = ioc->mmio_region;
1517  } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1518  (res->end <= (ioc->mmio_region + 1)->end)) {
1519  parent = ioc->mmio_region + 1;
1520  } else {
1521  return -EBUSY;
1522  }
1523 
1524  /* "transparent" bus bridges need to register MMIO resources
1525  * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1526  * registered their resources in the PDC "bus walk" (See
1527  * arch/parisc/kernel/inventory.c).
1528  */
1529  return insert_resource(parent, res);
1530 }
1531 
1540 static int __init ccio_probe(struct parisc_device *dev)
1541 {
1542  int i;
1543  struct ioc *ioc, **ioc_p = &ioc_list;
1544 
1545  ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1546  if (ioc == NULL) {
1547  printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1548  return 1;
1549  }
1550 
1551  ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1552 
1553  printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1554  (unsigned long)dev->hpa.start);
1555 
1556  for (i = 0; i < ioc_count; i++) {
1557  ioc_p = &(*ioc_p)->next;
1558  }
1559  *ioc_p = ioc;
1560 
1561  ioc->hw_path = dev->hw_path;
1562  ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1563  ccio_ioc_init(ioc);
1564  ccio_init_resources(ioc);
1565  hppa_dma_ops = &ccio_ops;
1566  dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1567 
1568  /* if this fails, no I/O cards will work, so may as well bug */
1569  BUG_ON(dev->dev.platform_data == NULL);
1570  HBA_DATA(dev->dev.platform_data)->iommu = ioc;
1571 
1572 #ifdef CONFIG_PROC_FS
1573  if (ioc_count == 0) {
1574  proc_create(MODULE_NAME, 0, proc_runway_root,
1575  &ccio_proc_info_fops);
1576  proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root,
1577  &ccio_proc_bitmap_fops);
1578  }
1579 #endif
1580  ioc_count++;
1581 
1582  parisc_has_iommu();
1583  return 0;
1584 }
1585 
1591 void __init ccio_init(void)
1592 {
1593  register_parisc_driver(&ccio_driver);
1594 }
1595