Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cevt-smtc.c
Go to the documentation of this file.
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License. See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2007 MIPS Technologies, Inc.
7  * Copyright (C) 2007 Ralf Baechle <[email protected]>
8  * Copyright (C) 2008 Kevin D. Kissell, Paralogos sarl
9  */
10 #include <linux/clockchips.h>
11 #include <linux/interrupt.h>
12 #include <linux/percpu.h>
13 #include <linux/smp.h>
14 #include <linux/irq.h>
15 
16 #include <asm/smtc_ipi.h>
17 #include <asm/time.h>
18 #include <asm/cevt-r4k.h>
19 
20 /*
21  * Variant clock event timer support for SMTC on MIPS 34K, 1004K
22  * or other MIPS MT cores.
23  *
24  * Notes on SMTC Support:
25  *
26  * SMTC has multiple microthread TCs pretending to be Linux CPUs.
27  * But there's only one Count/Compare pair per VPE, and Compare
28  * interrupts are taken opportunisitically by available TCs
29  * bound to the VPE with the Count register. The new timer
30  * framework provides for global broadcasts, but we really
31  * want VPE-level multicasts for best behavior. So instead
32  * of invoking the high-level clock-event broadcast code,
33  * this version of SMTC support uses the historical SMTC
34  * multicast mechanisms "under the hood", appearing to the
35  * generic clock layer as if the interrupts are per-CPU.
36  *
37  * The approach taken here is to maintain a set of NR_CPUS
38  * virtual timers, and track which "CPU" needs to be alerted
39  * at each event.
40  *
41  * It's unlikely that we'll see a MIPS MT core with more than
42  * 2 VPEs, but we *know* that we won't need to handle more
43  * VPEs than we have "CPUs". So NCPUs arrays of NCPUs elements
44  * is always going to be overkill, but always going to be enough.
45  */
46 
47 unsigned long smtc_nexttime[NR_CPUS][NR_CPUS];
48 static int smtc_nextinvpe[NR_CPUS];
49 
50 /*
51  * Timestamps stored are absolute values to be programmed
52  * into Count register. Valid timestamps will never be zero.
53  * If a Zero Count value is actually calculated, it is converted
54  * to be a 1, which will introduce 1 or two CPU cycles of error
55  * roughly once every four billion events, which at 1000 HZ means
56  * about once every 50 days. If that's actually a problem, one
57  * could alternate squashing 0 to 1 and to -1.
58  */
59 
60 #define MAKEVALID(x) (((x) == 0L) ? 1L : (x))
61 #define ISVALID(x) ((x) != 0L)
62 
63 /*
64  * Time comparison is subtle, as it's really truncated
65  * modular arithmetic.
66  */
67 
68 #define IS_SOONER(a, b, reference) \
69  (((a) - (unsigned long)(reference)) < ((b) - (unsigned long)(reference)))
70 
71 /*
72  * CATCHUP_INCREMENT, used when the function falls behind the counter.
73  * Could be an increasing function instead of a constant;
74  */
75 
76 #define CATCHUP_INCREMENT 64
77 
78 static int mips_next_event(unsigned long delta,
79  struct clock_event_device *evt)
80 {
81  unsigned long flags;
82  unsigned int mtflags;
83  unsigned long timestamp, reference, previous;
84  unsigned long nextcomp = 0L;
85  int vpe = current_cpu_data.vpe_id;
86  int cpu = smp_processor_id();
87  local_irq_save(flags);
88  mtflags = dmt();
89 
90  /*
91  * Maintain the per-TC virtual timer
92  * and program the per-VPE shared Count register
93  * as appropriate here...
94  */
95  reference = (unsigned long)read_c0_count();
96  timestamp = MAKEVALID(reference + delta);
97  /*
98  * To really model the clock, we have to catch the case
99  * where the current next-in-VPE timestamp is the old
100  * timestamp for the calling CPE, but the new value is
101  * in fact later. In that case, we have to do a full
102  * scan and discover the new next-in-VPE CPU id and
103  * timestamp.
104  */
105  previous = smtc_nexttime[vpe][cpu];
106  if (cpu == smtc_nextinvpe[vpe] && ISVALID(previous)
107  && IS_SOONER(previous, timestamp, reference)) {
108  int i;
109  int soonest = cpu;
110 
111  /*
112  * Update timestamp array here, so that new
113  * value gets considered along with those of
114  * other virtual CPUs on the VPE.
115  */
116  smtc_nexttime[vpe][cpu] = timestamp;
118  if (ISVALID(smtc_nexttime[vpe][i])
119  && IS_SOONER(smtc_nexttime[vpe][i],
120  smtc_nexttime[vpe][soonest], reference)) {
121  soonest = i;
122  }
123  }
124  smtc_nextinvpe[vpe] = soonest;
125  nextcomp = smtc_nexttime[vpe][soonest];
126  /*
127  * Otherwise, we don't have to process the whole array rank,
128  * we just have to see if the event horizon has gotten closer.
129  */
130  } else {
131  if (!ISVALID(smtc_nexttime[vpe][smtc_nextinvpe[vpe]]) ||
132  IS_SOONER(timestamp,
133  smtc_nexttime[vpe][smtc_nextinvpe[vpe]], reference)) {
134  smtc_nextinvpe[vpe] = cpu;
135  nextcomp = timestamp;
136  }
137  /*
138  * Since next-in-VPE may me the same as the executing
139  * virtual CPU, we update the array *after* checking
140  * its value.
141  */
142  smtc_nexttime[vpe][cpu] = timestamp;
143  }
144 
145  /*
146  * It may be that, in fact, we don't need to update Compare,
147  * but if we do, we want to make sure we didn't fall into
148  * a crack just behind Count.
149  */
150  if (ISVALID(nextcomp)) {
151  write_c0_compare(nextcomp);
152  ehb();
153  /*
154  * We never return an error, we just make sure
155  * that we trigger the handlers as quickly as
156  * we can if we fell behind.
157  */
158  while ((nextcomp - (unsigned long)read_c0_count())
159  > (unsigned long)LONG_MAX) {
160  nextcomp += CATCHUP_INCREMENT;
161  write_c0_compare(nextcomp);
162  ehb();
163  }
164  }
165  emt(mtflags);
166  local_irq_restore(flags);
167  return 0;
168 }
169 
170 
172 {
173  unsigned long flags;
174  unsigned int mtflags;
175  int cpu;
176  struct clock_event_device *cd;
177  unsigned long nextstamp;
178  unsigned long reference;
179 
180 
181 repeat:
182  nextstamp = 0L;
183  for_each_online_cpu(cpu) {
184  /*
185  * Find virtual CPUs within the current VPE who have
186  * unserviced timer requests whose time is now past.
187  */
188  local_irq_save(flags);
189  mtflags = dmt();
190  if (cpu_data[cpu].vpe_id == vpe &&
191  ISVALID(smtc_nexttime[vpe][cpu])) {
192  reference = (unsigned long)read_c0_count();
193  if ((smtc_nexttime[vpe][cpu] - reference)
194  > (unsigned long)LONG_MAX) {
195  smtc_nexttime[vpe][cpu] = 0L;
196  emt(mtflags);
197  local_irq_restore(flags);
198  /*
199  * We don't send IPIs to ourself.
200  */
201  if (cpu != smp_processor_id()) {
203  } else {
204  cd = &per_cpu(mips_clockevent_device, cpu);
205  cd->event_handler(cd);
206  }
207  } else {
208  /* Local to VPE but Valid Time not yet reached. */
209  if (!ISVALID(nextstamp) ||
210  IS_SOONER(smtc_nexttime[vpe][cpu], nextstamp,
211  reference)) {
212  smtc_nextinvpe[vpe] = cpu;
213  nextstamp = smtc_nexttime[vpe][cpu];
214  }
215  emt(mtflags);
216  local_irq_restore(flags);
217  }
218  } else {
219  emt(mtflags);
220  local_irq_restore(flags);
221 
222  }
223  }
224  /* Reprogram for interrupt at next soonest timestamp for VPE */
225  if (ISVALID(nextstamp)) {
226  write_c0_compare(nextstamp);
227  ehb();
228  if ((nextstamp - (unsigned long)read_c0_count())
229  > (unsigned long)LONG_MAX)
230  goto repeat;
231  }
232 }
233 
234 
236 {
237  int cpu = smp_processor_id();
238 
239  /* If we're running SMTC, we've got MIPS MT and therefore MIPS32R2 */
240  handle_perf_irq(1);
241 
242  if (read_c0_cause() & (1 << 30)) {
243  /* Clear Count/Compare Interrupt */
246  }
247  return IRQ_HANDLED;
248 }
249 
250 
252 {
253  uint64_t mips_freq = mips_hpt_frequency;
254  unsigned int cpu = smp_processor_id();
255  struct clock_event_device *cd;
256  unsigned int irq;
257  int i;
258  int j;
259 
261  return -ENXIO;
262  if (cpu == 0) {
263  for (i = 0; i < num_possible_cpus(); i++) {
264  smtc_nextinvpe[i] = 0;
265  for (j = 0; j < num_possible_cpus(); j++)
266  smtc_nexttime[i][j] = 0L;
267  }
268  /*
269  * SMTC also can't have the usablility test
270  * run by secondary TCs once Compare is in use.
271  */
272  if (!c0_compare_int_usable())
273  return -ENXIO;
274  }
275 
276  /*
277  * With vectored interrupts things are getting platform specific.
278  * get_c0_compare_int is a hook to allow a platform to return the
279  * interrupt number of it's liking.
280  */
282  if (get_c0_compare_int)
283  irq = get_c0_compare_int();
284 
285  cd = &per_cpu(mips_clockevent_device, cpu);
286 
287  cd->name = "MIPS";
288  cd->features = CLOCK_EVT_FEAT_ONESHOT;
289 
290  /* Calculate the min / max delta */
291  cd->mult = div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
292  cd->shift = 32;
293  cd->max_delta_ns = clockevent_delta2ns(0x7fffffff, cd);
294  cd->min_delta_ns = clockevent_delta2ns(0x300, cd);
295 
296  cd->rating = 300;
297  cd->irq = irq;
298  cd->cpumask = cpumask_of(cpu);
299  cd->set_next_event = mips_next_event;
300  cd->set_mode = mips_set_clock_mode;
301  cd->event_handler = mips_event_handler;
302 
304 
305  /*
306  * On SMTC we only want to do the data structure
307  * initialization and IRQ setup once.
308  */
309  if (cpu)
310  return 0;
311  /*
312  * And we need the hwmask associated with the c0_compare
313  * vector to be initialized.
314  */
315  irq_hwmask[irq] = (0x100 << cp0_compare_irq);
317  return 0;
318 
320 
322 
323  return 0;
324 }