Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
clocksource.c
Go to the documentation of this file.
1 /*
2  * linux/kernel/time/clocksource.c
3  *
4  * This file contains the functions which manage clocksource drivers.
5  *
6  * Copyright (C) 2004, 2005 IBM, John Stultz ([email protected])
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  *
22  * TODO WishList:
23  * o Allow clocksource drivers to be unregistered
24  */
25 
26 #include <linux/device.h>
27 #include <linux/clocksource.h>
28 #include <linux/init.h>
29 #include <linux/module.h>
30 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
31 #include <linux/tick.h>
32 #include <linux/kthread.h>
33 
35  const struct cyclecounter *cc,
36  u64 start_tstamp)
37 {
38  tc->cc = cc;
39  tc->cycle_last = cc->read(cc);
40  tc->nsec = start_tstamp;
41 }
43 
55 static u64 timecounter_read_delta(struct timecounter *tc)
56 {
57  cycle_t cycle_now, cycle_delta;
58  u64 ns_offset;
59 
60  /* read cycle counter: */
61  cycle_now = tc->cc->read(tc->cc);
62 
63  /* calculate the delta since the last timecounter_read_delta(): */
64  cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;
65 
66  /* convert to nanoseconds: */
67  ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);
68 
69  /* update time stamp of timecounter_read_delta() call: */
70  tc->cycle_last = cycle_now;
71 
72  return ns_offset;
73 }
74 
76 {
77  u64 nsec;
78 
79  /* increment time by nanoseconds since last call */
80  nsec = timecounter_read_delta(tc);
81  nsec += tc->nsec;
82  tc->nsec = nsec;
83 
84  return nsec;
85 }
87 
89  cycle_t cycle_tstamp)
90 {
91  u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
92  u64 nsec;
93 
94  /*
95  * Instead of always treating cycle_tstamp as more recent
96  * than tc->cycle_last, detect when it is too far in the
97  * future and treat it as old time stamp instead.
98  */
99  if (cycle_delta > tc->cc->mask / 2) {
100  cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
101  nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
102  } else {
103  nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
104  }
105 
106  return nsec;
107 }
109 
133 void
135 {
136  u64 tmp;
137  u32 sft, sftacc= 32;
138 
139  /*
140  * Calculate the shift factor which is limiting the conversion
141  * range:
142  */
143  tmp = ((u64)maxsec * from) >> 32;
144  while (tmp) {
145  tmp >>=1;
146  sftacc--;
147  }
148 
149  /*
150  * Find the conversion shift/mult pair which has the best
151  * accuracy and fits the maxsec conversion range:
152  */
153  for (sft = 32; sft > 0; sft--) {
154  tmp = (u64) to << sft;
155  tmp += from / 2;
156  do_div(tmp, from);
157  if ((tmp >> sftacc) == 0)
158  break;
159  }
160  *mult = tmp;
161  *shift = sft;
162 }
163 
164 /*[Clocksource internal variables]---------
165  * curr_clocksource:
166  * currently selected clocksource.
167  * clocksource_list:
168  * linked list with the registered clocksources
169  * clocksource_mutex:
170  * protects manipulations to curr_clocksource and the clocksource_list
171  * override_name:
172  * Name of the user-specified clocksource.
173  */
174 static struct clocksource *curr_clocksource;
175 static LIST_HEAD(clocksource_list);
176 static DEFINE_MUTEX(clocksource_mutex);
177 static char override_name[32];
178 static int finished_booting;
179 
180 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
181 static void clocksource_watchdog_work(struct work_struct *work);
182 
183 static LIST_HEAD(watchdog_list);
184 static struct clocksource *watchdog;
185 static struct timer_list watchdog_timer;
186 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
187 static DEFINE_SPINLOCK(watchdog_lock);
188 static int watchdog_running;
189 static atomic_t watchdog_reset_pending;
190 
191 static int clocksource_watchdog_kthread(void *data);
192 static void __clocksource_change_rating(struct clocksource *cs, int rating);
193 
194 /*
195  * Interval: 0.5sec Threshold: 0.0625s
196  */
197 #define WATCHDOG_INTERVAL (HZ >> 1)
198 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
199 
200 static void clocksource_watchdog_work(struct work_struct *work)
201 {
202  /*
203  * If kthread_run fails the next watchdog scan over the
204  * watchdog_list will find the unstable clock again.
205  */
206  kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
207 }
208 
209 static void __clocksource_unstable(struct clocksource *cs)
210 {
213  if (finished_booting)
214  schedule_work(&watchdog_work);
215 }
216 
217 static void clocksource_unstable(struct clocksource *cs, int64_t delta)
218 {
219  printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
220  cs->name, delta);
221  __clocksource_unstable(cs);
222 }
223 
233 void clocksource_mark_unstable(struct clocksource *cs)
234 {
235  unsigned long flags;
236 
237  spin_lock_irqsave(&watchdog_lock, flags);
238  if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
239  if (list_empty(&cs->wd_list))
240  list_add(&cs->wd_list, &watchdog_list);
241  __clocksource_unstable(cs);
242  }
243  spin_unlock_irqrestore(&watchdog_lock, flags);
244 }
245 
246 static void clocksource_watchdog(unsigned long data)
247 {
248  struct clocksource *cs;
249  cycle_t csnow, wdnow;
250  int64_t wd_nsec, cs_nsec;
251  int next_cpu, reset_pending;
252 
253  spin_lock(&watchdog_lock);
254  if (!watchdog_running)
255  goto out;
256 
257  reset_pending = atomic_read(&watchdog_reset_pending);
258 
259  list_for_each_entry(cs, &watchdog_list, wd_list) {
260 
261  /* Clocksource already marked unstable? */
262  if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
263  if (finished_booting)
264  schedule_work(&watchdog_work);
265  continue;
266  }
267 
269  csnow = cs->read(cs);
270  wdnow = watchdog->read(watchdog);
272 
273  /* Clocksource initialized ? */
274  if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
275  atomic_read(&watchdog_reset_pending)) {
277  cs->wd_last = wdnow;
278  cs->cs_last = csnow;
279  continue;
280  }
281 
282  wd_nsec = clocksource_cyc2ns((wdnow - cs->wd_last) & watchdog->mask,
283  watchdog->mult, watchdog->shift);
284 
285  cs_nsec = clocksource_cyc2ns((csnow - cs->cs_last) &
286  cs->mask, cs->mult, cs->shift);
287  cs->cs_last = csnow;
288  cs->wd_last = wdnow;
289 
290  if (atomic_read(&watchdog_reset_pending))
291  continue;
292 
293  /* Check the deviation from the watchdog clocksource. */
294  if ((abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD)) {
295  clocksource_unstable(cs, cs_nsec - wd_nsec);
296  continue;
297  }
298 
299  if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
301  (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
303  /*
304  * We just marked the clocksource as highres-capable,
305  * notify the rest of the system as well so that we
306  * transition into high-res mode:
307  */
309  }
310  }
311 
312  /*
313  * We only clear the watchdog_reset_pending, when we did a
314  * full cycle through all clocksources.
315  */
316  if (reset_pending)
317  atomic_dec(&watchdog_reset_pending);
318 
319  /*
320  * Cycle through CPUs to check if the CPUs stay synchronized
321  * to each other.
322  */
323  next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
324  if (next_cpu >= nr_cpu_ids)
325  next_cpu = cpumask_first(cpu_online_mask);
326  watchdog_timer.expires += WATCHDOG_INTERVAL;
327  add_timer_on(&watchdog_timer, next_cpu);
328 out:
329  spin_unlock(&watchdog_lock);
330 }
331 
332 static inline void clocksource_start_watchdog(void)
333 {
334  if (watchdog_running || !watchdog || list_empty(&watchdog_list))
335  return;
336  init_timer(&watchdog_timer);
337  watchdog_timer.function = clocksource_watchdog;
338  watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
339  add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
340  watchdog_running = 1;
341 }
342 
343 static inline void clocksource_stop_watchdog(void)
344 {
345  if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
346  return;
347  del_timer(&watchdog_timer);
348  watchdog_running = 0;
349 }
350 
351 static inline void clocksource_reset_watchdog(void)
352 {
353  struct clocksource *cs;
354 
355  list_for_each_entry(cs, &watchdog_list, wd_list)
356  cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
357 }
358 
359 static void clocksource_resume_watchdog(void)
360 {
361  atomic_inc(&watchdog_reset_pending);
362 }
363 
364 static void clocksource_enqueue_watchdog(struct clocksource *cs)
365 {
366  unsigned long flags;
367 
368  spin_lock_irqsave(&watchdog_lock, flags);
369  if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
370  /* cs is a clocksource to be watched. */
371  list_add(&cs->wd_list, &watchdog_list);
373  } else {
374  /* cs is a watchdog. */
377  /* Pick the best watchdog. */
378  if (!watchdog || cs->rating > watchdog->rating) {
379  watchdog = cs;
380  /* Reset watchdog cycles */
381  clocksource_reset_watchdog();
382  }
383  }
384  /* Check if the watchdog timer needs to be started. */
385  clocksource_start_watchdog();
386  spin_unlock_irqrestore(&watchdog_lock, flags);
387 }
388 
389 static void clocksource_dequeue_watchdog(struct clocksource *cs)
390 {
391  struct clocksource *tmp;
392  unsigned long flags;
393 
394  spin_lock_irqsave(&watchdog_lock, flags);
395  if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
396  /* cs is a watched clocksource. */
397  list_del_init(&cs->wd_list);
398  } else if (cs == watchdog) {
399  /* Reset watchdog cycles */
400  clocksource_reset_watchdog();
401  /* Current watchdog is removed. Find an alternative. */
402  watchdog = NULL;
403  list_for_each_entry(tmp, &clocksource_list, list) {
404  if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY)
405  continue;
406  if (!watchdog || tmp->rating > watchdog->rating)
407  watchdog = tmp;
408  }
409  }
411  /* Check if the watchdog timer needs to be stopped. */
412  clocksource_stop_watchdog();
413  spin_unlock_irqrestore(&watchdog_lock, flags);
414 }
415 
416 static int clocksource_watchdog_kthread(void *data)
417 {
418  struct clocksource *cs, *tmp;
419  unsigned long flags;
420  LIST_HEAD(unstable);
421 
422  mutex_lock(&clocksource_mutex);
423  spin_lock_irqsave(&watchdog_lock, flags);
424  list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list)
425  if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
426  list_del_init(&cs->wd_list);
427  list_add(&cs->wd_list, &unstable);
428  }
429  /* Check if the watchdog timer needs to be stopped. */
430  clocksource_stop_watchdog();
431  spin_unlock_irqrestore(&watchdog_lock, flags);
432 
433  /* Needs to be done outside of watchdog lock */
434  list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
435  list_del_init(&cs->wd_list);
436  __clocksource_change_rating(cs, 0);
437  }
438  mutex_unlock(&clocksource_mutex);
439  return 0;
440 }
441 
442 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
443 
444 static void clocksource_enqueue_watchdog(struct clocksource *cs)
445 {
448 }
449 
450 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
451 static inline void clocksource_resume_watchdog(void) { }
452 static inline int clocksource_watchdog_kthread(void *data) { return 0; }
453 
454 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
455 
460 {
461  struct clocksource *cs;
462 
463  list_for_each_entry_reverse(cs, &clocksource_list, list)
464  if (cs->suspend)
465  cs->suspend(cs);
466 }
467 
472 {
473  struct clocksource *cs;
474 
475  list_for_each_entry(cs, &clocksource_list, list)
476  if (cs->resume)
477  cs->resume(cs);
478 
479  clocksource_resume_watchdog();
480 }
481 
490 {
491  clocksource_resume_watchdog();
492 }
493 
499 static u32 clocksource_max_adjustment(struct clocksource *cs)
500 {
501  u64 ret;
502  /*
503  * We won't try to correct for more than 11% adjustments (110,000 ppm),
504  */
505  ret = (u64)cs->mult * 11;
506  do_div(ret,100);
507  return (u32)ret;
508 }
509 
515 static u64 clocksource_max_deferment(struct clocksource *cs)
516 {
517  u64 max_nsecs, max_cycles;
518 
519  /*
520  * Calculate the maximum number of cycles that we can pass to the
521  * cyc2ns function without overflowing a 64-bit signed result. The
522  * maximum number of cycles is equal to ULLONG_MAX/(cs->mult+cs->maxadj)
523  * which is equivalent to the below.
524  * max_cycles < (2^63)/(cs->mult + cs->maxadj)
525  * max_cycles < 2^(log2((2^63)/(cs->mult + cs->maxadj)))
526  * max_cycles < 2^(log2(2^63) - log2(cs->mult + cs->maxadj))
527  * max_cycles < 2^(63 - log2(cs->mult + cs->maxadj))
528  * max_cycles < 1 << (63 - log2(cs->mult + cs->maxadj))
529  * Please note that we add 1 to the result of the log2 to account for
530  * any rounding errors, ensure the above inequality is satisfied and
531  * no overflow will occur.
532  */
533  max_cycles = 1ULL << (63 - (ilog2(cs->mult + cs->maxadj) + 1));
534 
535  /*
536  * The actual maximum number of cycles we can defer the clocksource is
537  * determined by the minimum of max_cycles and cs->mask.
538  * Note: Here we subtract the maxadj to make sure we don't sleep for
539  * too long if there's a large negative adjustment.
540  */
541  max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
542  max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult - cs->maxadj,
543  cs->shift);
544 
545  /*
546  * To ensure that the clocksource does not wrap whilst we are idle,
547  * limit the time the clocksource can be deferred by 12.5%. Please
548  * note a margin of 12.5% is used because this can be computed with
549  * a shift, versus say 10% which would require division.
550  */
551  return max_nsecs - (max_nsecs >> 3);
552 }
553 
554 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
555 
564 static void clocksource_select(void)
565 {
566  struct clocksource *best, *cs;
567 
568  if (!finished_booting || list_empty(&clocksource_list))
569  return;
570  /* First clocksource on the list has the best rating. */
571  best = list_first_entry(&clocksource_list, struct clocksource, list);
572  /* Check for the override clocksource. */
573  list_for_each_entry(cs, &clocksource_list, list) {
574  if (strcmp(cs->name, override_name) != 0)
575  continue;
576  /*
577  * Check to make sure we don't switch to a non-highres
578  * capable clocksource if the tick code is in oneshot
579  * mode (highres or nohz)
580  */
581  if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
583  /* Override clocksource cannot be used. */
584  printk(KERN_WARNING "Override clocksource %s is not "
585  "HRT compatible. Cannot switch while in "
586  "HRT/NOHZ mode\n", cs->name);
587  override_name[0] = 0;
588  } else
589  /* Override clocksource can be used. */
590  best = cs;
591  break;
592  }
593  if (curr_clocksource != best) {
594  printk(KERN_INFO "Switching to clocksource %s\n", best->name);
595  curr_clocksource = best;
596  timekeeping_notify(curr_clocksource);
597  }
598 }
599 
600 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
601 
602 static inline void clocksource_select(void) { }
603 
604 #endif
605 
606 /*
607  * clocksource_done_booting - Called near the end of core bootup
608  *
609  * Hack to avoid lots of clocksource churn at boot time.
610  * We use fs_initcall because we want this to start before
611  * device_initcall but after subsys_initcall.
612  */
613 static int __init clocksource_done_booting(void)
614 {
615  mutex_lock(&clocksource_mutex);
616  curr_clocksource = clocksource_default_clock();
617  mutex_unlock(&clocksource_mutex);
618 
619  finished_booting = 1;
620 
621  /*
622  * Run the watchdog first to eliminate unstable clock sources
623  */
624  clocksource_watchdog_kthread(NULL);
625 
626  mutex_lock(&clocksource_mutex);
627  clocksource_select();
628  mutex_unlock(&clocksource_mutex);
629  return 0;
630 }
631 fs_initcall(clocksource_done_booting);
632 
633 /*
634  * Enqueue the clocksource sorted by rating
635  */
636 static void clocksource_enqueue(struct clocksource *cs)
637 {
638  struct list_head *entry = &clocksource_list;
639  struct clocksource *tmp;
640 
641  list_for_each_entry(tmp, &clocksource_list, list)
642  /* Keep track of the place, where to insert */
643  if (tmp->rating >= cs->rating)
644  entry = &tmp->list;
645  list_add(&cs->list, entry);
646 }
647 
660 {
661  u64 sec;
662  /*
663  * Calc the maximum number of seconds which we can run before
664  * wrapping around. For clocksources which have a mask > 32bit
665  * we need to limit the max sleep time to have a good
666  * conversion precision. 10 minutes is still a reasonable
667  * amount. That results in a shift value of 24 for a
668  * clocksource with mask >= 40bit and f >= 4GHz. That maps to
669  * ~ 0.06ppm granularity for NTP. We apply the same 12.5%
670  * margin as we do in clocksource_max_deferment()
671  */
672  sec = (cs->mask - (cs->mask >> 3));
673  do_div(sec, freq);
674  do_div(sec, scale);
675  if (!sec)
676  sec = 1;
677  else if (sec > 600 && cs->mask > UINT_MAX)
678  sec = 600;
679 
680  clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
681  NSEC_PER_SEC / scale, sec * scale);
682 
683  /*
684  * for clocksources that have large mults, to avoid overflow.
685  * Since mult may be adjusted by ntp, add an safety extra margin
686  *
687  */
688  cs->maxadj = clocksource_max_adjustment(cs);
689  while ((cs->mult + cs->maxadj < cs->mult)
690  || (cs->mult - cs->maxadj > cs->mult)) {
691  cs->mult >>= 1;
692  cs->shift--;
693  cs->maxadj = clocksource_max_adjustment(cs);
694  }
695 
696  cs->max_idle_ns = clocksource_max_deferment(cs);
697 }
699 
712 {
713 
714  /* Initialize mult/shift and max_idle_ns */
715  __clocksource_updatefreq_scale(cs, scale, freq);
716 
717  /* Add clocksource to the clcoksource list */
718  mutex_lock(&clocksource_mutex);
719  clocksource_enqueue(cs);
720  clocksource_enqueue_watchdog(cs);
721  clocksource_select();
722  mutex_unlock(&clocksource_mutex);
723  return 0;
724 }
726 
727 
735 {
736  /* calculate max adjustment for given mult/shift */
737  cs->maxadj = clocksource_max_adjustment(cs);
738  WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
739  "Clocksource %s might overflow on 11%% adjustment\n",
740  cs->name);
741 
742  /* calculate max idle time permitted for this clocksource */
743  cs->max_idle_ns = clocksource_max_deferment(cs);
744 
745  mutex_lock(&clocksource_mutex);
746  clocksource_enqueue(cs);
747  clocksource_enqueue_watchdog(cs);
748  clocksource_select();
749  mutex_unlock(&clocksource_mutex);
750  return 0;
751 }
753 
754 static void __clocksource_change_rating(struct clocksource *cs, int rating)
755 {
756  list_del(&cs->list);
757  cs->rating = rating;
758  clocksource_enqueue(cs);
759  clocksource_select();
760 }
761 
768 {
769  mutex_lock(&clocksource_mutex);
770  __clocksource_change_rating(cs, rating);
771  mutex_unlock(&clocksource_mutex);
772 }
774 
780 {
781  mutex_lock(&clocksource_mutex);
782  clocksource_dequeue_watchdog(cs);
783  list_del(&cs->list);
784  clocksource_select();
785  mutex_unlock(&clocksource_mutex);
786 }
788 
789 #ifdef CONFIG_SYSFS
790 
798 static ssize_t
799 sysfs_show_current_clocksources(struct device *dev,
800  struct device_attribute *attr, char *buf)
801 {
802  ssize_t count = 0;
803 
804  mutex_lock(&clocksource_mutex);
805  count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
806  mutex_unlock(&clocksource_mutex);
807 
808  return count;
809 }
810 
821 static ssize_t sysfs_override_clocksource(struct device *dev,
822  struct device_attribute *attr,
823  const char *buf, size_t count)
824 {
825  size_t ret = count;
826 
827  /* strings from sysfs write are not 0 terminated! */
828  if (count >= sizeof(override_name))
829  return -EINVAL;
830 
831  /* strip of \n: */
832  if (buf[count-1] == '\n')
833  count--;
834 
835  mutex_lock(&clocksource_mutex);
836 
837  if (count > 0)
838  memcpy(override_name, buf, count);
839  override_name[count] = 0;
840  clocksource_select();
841 
842  mutex_unlock(&clocksource_mutex);
843 
844  return ret;
845 }
846 
855 static ssize_t
856 sysfs_show_available_clocksources(struct device *dev,
857  struct device_attribute *attr,
858  char *buf)
859 {
860  struct clocksource *src;
861  ssize_t count = 0;
862 
863  mutex_lock(&clocksource_mutex);
864  list_for_each_entry(src, &clocksource_list, list) {
865  /*
866  * Don't show non-HRES clocksource if the tick code is
867  * in one shot mode (highres=on or nohz=on)
868  */
869  if (!tick_oneshot_mode_active() ||
871  count += snprintf(buf + count,
872  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
873  "%s ", src->name);
874  }
875  mutex_unlock(&clocksource_mutex);
876 
877  count += snprintf(buf + count,
878  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
879 
880  return count;
881 }
882 
883 /*
884  * Sysfs setup bits:
885  */
886 static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
887  sysfs_override_clocksource);
888 
889 static DEVICE_ATTR(available_clocksource, 0444,
890  sysfs_show_available_clocksources, NULL);
891 
892 static struct bus_type clocksource_subsys = {
893  .name = "clocksource",
894  .dev_name = "clocksource",
895 };
896 
897 static struct device device_clocksource = {
898  .id = 0,
899  .bus = &clocksource_subsys,
900 };
901 
902 static int __init init_clocksource_sysfs(void)
903 {
904  int error = subsys_system_register(&clocksource_subsys, NULL);
905 
906  if (!error)
907  error = device_register(&device_clocksource);
908  if (!error)
909  error = device_create_file(
910  &device_clocksource,
911  &dev_attr_current_clocksource);
912  if (!error)
913  error = device_create_file(
914  &device_clocksource,
915  &dev_attr_available_clocksource);
916  return error;
917 }
918 
919 device_initcall(init_clocksource_sysfs);
920 #endif /* CONFIG_SYSFS */
921 
929 static int __init boot_override_clocksource(char* str)
930 {
931  mutex_lock(&clocksource_mutex);
932  if (str)
933  strlcpy(override_name, str, sizeof(override_name));
934  mutex_unlock(&clocksource_mutex);
935  return 1;
936 }
937 
938 __setup("clocksource=", boot_override_clocksource);
939 
947 static int __init boot_override_clock(char* str)
948 {
949  if (!strcmp(str, "pmtmr")) {
950  printk("Warning: clock=pmtmr is deprecated. "
951  "Use clocksource=acpi_pm.\n");
952  return boot_override_clocksource("acpi_pm");
953  }
954  printk("Warning! clock= boot option is deprecated. "
955  "Use clocksource=xyz\n");
956  return boot_override_clocksource(str);
957 }
958 
959 __setup("clock=", boot_override_clock);