Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cp1emu.c
Go to the documentation of this file.
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  *
7  * Kevin D. Kissell, [email protected] and Carsten Langgaard, [email protected]
8  * Copyright (C) 2000 MIPS Technologies, Inc.
9  *
10  * This program is free software; you can distribute it and/or modify it
11  * under the terms of the GNU General Public License (Version 2) as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17  * for more details.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, write to the Free Software Foundation, Inc.,
21  * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * A complete emulator for MIPS coprocessor 1 instructions. This is
24  * required for #float(switch) or #float(trap), where it catches all
25  * COP1 instructions via the "CoProcessor Unusable" exception.
26  *
27  * More surprisingly it is also required for #float(ieee), to help out
28  * the hardware fpu at the boundaries of the IEEE-754 representation
29  * (denormalised values, infinities, underflow, etc). It is made
30  * quite nasty because emulation of some non-COP1 instructions is
31  * required, e.g. in branch delay slots.
32  *
33  * Note if you know that you won't have an fpu, then you'll get much
34  * better performance by compiling with -msoft-float!
35  */
36 #include <linux/sched.h>
37 #include <linux/module.h>
38 #include <linux/debugfs.h>
39 #include <linux/perf_event.h>
40 
41 #include <asm/inst.h>
42 #include <asm/bootinfo.h>
43 #include <asm/processor.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/mipsregs.h>
47 #include <asm/fpu_emulator.h>
48 #include <asm/uaccess.h>
49 #include <asm/branch.h>
50 
51 #include "ieee754.h"
52 
53 /* Strap kernel emulator for full MIPS IV emulation */
54 
55 #ifdef __mips
56 #undef __mips
57 #endif
58 #define __mips 4
59 
60 /* Function which emulates a floating point instruction. */
61 
62 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
64 
65 #if __mips >= 4 && __mips != 32
66 static int fpux_emu(struct pt_regs *,
67  struct mips_fpu_struct *, mips_instruction, void *__user *);
68 #endif
69 
70 /* Further private data for which no space exists in mips_fpu_struct */
71 
72 #ifdef CONFIG_DEBUG_FS
73 DEFINE_PER_CPU(struct mips_fpu_emulator_stats, fpuemustats);
74 #endif
75 
76 /* Control registers */
77 
78 #define FPCREG_RID 0 /* $0 = revision id */
79 #define FPCREG_CSR 31 /* $31 = csr */
80 
81 /* Determine rounding mode from the RM bits of the FCSR */
82 #define modeindex(v) ((v) & FPU_CSR_RM)
83 
84 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
85 static const unsigned char ieee_rm[4] = {
90 };
91 /* Convert IEEE library modes to Mips rounding mode (0..3). */
92 static const unsigned char mips_rm[4] = {
97 };
98 
99 #if __mips >= 4
100 /* convert condition code register number to csr bit */
101 static const unsigned int fpucondbit[8] = {
110 };
111 #endif
112 
113 
114 /*
115  * Redundant with logic already in kernel/branch.c,
116  * embedded in compute_return_epc. At some point,
117  * a single subroutine should be used across both
118  * modules.
119  */
120 static int isBranchInstr(mips_instruction * i)
121 {
122  switch (MIPSInst_OPCODE(*i)) {
123  case spec_op:
124  switch (MIPSInst_FUNC(*i)) {
125  case jalr_op:
126  case jr_op:
127  return 1;
128  }
129  break;
130 
131  case bcond_op:
132  switch (MIPSInst_RT(*i)) {
133  case bltz_op:
134  case bgez_op:
135  case bltzl_op:
136  case bgezl_op:
137  case bltzal_op:
138  case bgezal_op:
139  case bltzall_op:
140  case bgezall_op:
141  return 1;
142  }
143  break;
144 
145  case j_op:
146  case jal_op:
147  case jalx_op:
148  case beq_op:
149  case bne_op:
150  case blez_op:
151  case bgtz_op:
152  case beql_op:
153  case bnel_op:
154  case blezl_op:
155  case bgtzl_op:
156  return 1;
157 
158  case cop0_op:
159  case cop1_op:
160  case cop2_op:
161  case cop1x_op:
162  if (MIPSInst_RS(*i) == bc_op)
163  return 1;
164  break;
165  }
166 
167  return 0;
168 }
169 
170 /*
171  * In the Linux kernel, we support selection of FPR format on the
172  * basis of the Status.FR bit. If an FPU is not present, the FR bit
173  * is hardwired to zero, which would imply a 32-bit FPU even for
174  * 64-bit CPUs. For 64-bit kernels with no FPU we use TIF_32BIT_REGS
175  * as a proxy for the FR bit so that a 64-bit FPU is emulated. In any
176  * case, for a 32-bit kernel which uses the O32 MIPS ABI, only the
177  * even FPRs are used (Status.FR = 0).
178  */
179 static inline int cop1_64bit(struct pt_regs *xcp)
180 {
181  if (cpu_has_fpu)
182  return xcp->cp0_status & ST0_FR;
183 #ifdef CONFIG_64BIT
184  return !test_thread_flag(TIF_32BIT_REGS);
185 #else
186  return 0;
187 #endif
188 }
189 
190 #define SIFROMREG(si, x) ((si) = cop1_64bit(xcp) || !(x & 1) ? \
191  (int)ctx->fpr[x] : (int)(ctx->fpr[x & ~1] >> 32))
192 
193 #define SITOREG(si, x) (ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = \
194  cop1_64bit(xcp) || !(x & 1) ? \
195  ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
196  ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
197 
198 #define DIFROMREG(di, x) ((di) = ctx->fpr[x & ~(cop1_64bit(xcp) == 0)])
199 #define DITOREG(di, x) (ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = (di))
200 
201 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
202 #define SPTOREG(sp, x) SITOREG((sp).bits, x)
203 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x)
204 #define DPTOREG(dp, x) DITOREG((dp).bits, x)
205 
206 /*
207  * Emulate the single floating point instruction pointed at by EPC.
208  * Two instructions if the instruction is in a branch delay slot.
209  */
210 
211 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
212  void *__user *fault_addr)
213 {
215  unsigned long emulpc, contpc;
216  unsigned int cond;
217 
218  if (!access_ok(VERIFY_READ, xcp->cp0_epc, sizeof(mips_instruction))) {
220  *fault_addr = (mips_instruction __user *)xcp->cp0_epc;
221  return SIGBUS;
222  }
223  if (__get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) {
225  *fault_addr = (mips_instruction __user *)xcp->cp0_epc;
226  return SIGSEGV;
227  }
228 
229  /* XXX NEC Vr54xx bug workaround */
230  if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
231  xcp->cp0_cause &= ~CAUSEF_BD;
232 
233  if (xcp->cp0_cause & CAUSEF_BD) {
234  /*
235  * The instruction to be emulated is in a branch delay slot
236  * which means that we have to emulate the branch instruction
237  * BEFORE we do the cop1 instruction.
238  *
239  * This branch could be a COP1 branch, but in that case we
240  * would have had a trap for that instruction, and would not
241  * come through this route.
242  *
243  * Linux MIPS branch emulator operates on context, updating the
244  * cp0_epc.
245  */
246  emulpc = xcp->cp0_epc + 4; /* Snapshot emulation target */
247 
248  if (__compute_return_epc(xcp) < 0) {
249 #ifdef CP1DBG
250  printk("failed to emulate branch at %p\n",
251  (void *) (xcp->cp0_epc));
252 #endif
253  return SIGILL;
254  }
255  if (!access_ok(VERIFY_READ, emulpc, sizeof(mips_instruction))) {
257  *fault_addr = (mips_instruction __user *)emulpc;
258  return SIGBUS;
259  }
260  if (__get_user(ir, (mips_instruction __user *) emulpc)) {
262  *fault_addr = (mips_instruction __user *)emulpc;
263  return SIGSEGV;
264  }
265  /* __compute_return_epc() will have updated cp0_epc */
266  contpc = xcp->cp0_epc;
267  /* In order not to confuse ptrace() et al, tweak context */
268  xcp->cp0_epc = emulpc - 4;
269  } else {
270  emulpc = xcp->cp0_epc;
271  contpc = xcp->cp0_epc + 4;
272  }
273 
274  emul:
275  perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
276  MIPS_FPU_EMU_INC_STATS(emulated);
277  switch (MIPSInst_OPCODE(ir)) {
278  case ldc1_op:{
279  u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
280  MIPSInst_SIMM(ir));
281  u64 val;
282 
283  MIPS_FPU_EMU_INC_STATS(loads);
284 
285  if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
287  *fault_addr = va;
288  return SIGBUS;
289  }
290  if (__get_user(val, va)) {
292  *fault_addr = va;
293  return SIGSEGV;
294  }
295  DITOREG(val, MIPSInst_RT(ir));
296  break;
297  }
298 
299  case sdc1_op:{
300  u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
301  MIPSInst_SIMM(ir));
302  u64 val;
303 
304  MIPS_FPU_EMU_INC_STATS(stores);
305  DIFROMREG(val, MIPSInst_RT(ir));
306  if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
308  *fault_addr = va;
309  return SIGBUS;
310  }
311  if (__put_user(val, va)) {
313  *fault_addr = va;
314  return SIGSEGV;
315  }
316  break;
317  }
318 
319  case lwc1_op:{
320  u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
321  MIPSInst_SIMM(ir));
322  u32 val;
323 
324  MIPS_FPU_EMU_INC_STATS(loads);
325  if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
327  *fault_addr = va;
328  return SIGBUS;
329  }
330  if (__get_user(val, va)) {
332  *fault_addr = va;
333  return SIGSEGV;
334  }
335  SITOREG(val, MIPSInst_RT(ir));
336  break;
337  }
338 
339  case swc1_op:{
340  u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
341  MIPSInst_SIMM(ir));
342  u32 val;
343 
344  MIPS_FPU_EMU_INC_STATS(stores);
345  SIFROMREG(val, MIPSInst_RT(ir));
346  if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
348  *fault_addr = va;
349  return SIGBUS;
350  }
351  if (__put_user(val, va)) {
353  *fault_addr = va;
354  return SIGSEGV;
355  }
356  break;
357  }
358 
359  case cop1_op:
360  switch (MIPSInst_RS(ir)) {
361 
362 #if defined(__mips64)
363  case dmfc_op:
364  /* copregister fs -> gpr[rt] */
365  if (MIPSInst_RT(ir) != 0) {
366  DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
367  MIPSInst_RD(ir));
368  }
369  break;
370 
371  case dmtc_op:
372  /* copregister fs <- rt */
373  DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
374  break;
375 #endif
376 
377  case mfc_op:
378  /* copregister rd -> gpr[rt] */
379  if (MIPSInst_RT(ir) != 0) {
380  SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
381  MIPSInst_RD(ir));
382  }
383  break;
384 
385  case mtc_op:
386  /* copregister rd <- rt */
387  SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
388  break;
389 
390  case cfc_op:{
391  /* cop control register rd -> gpr[rt] */
392  u32 value;
393 
394  if (MIPSInst_RD(ir) == FPCREG_CSR) {
395  value = ctx->fcr31;
396  value = (value & ~FPU_CSR_RM) |
397  mips_rm[modeindex(value)];
398 #ifdef CSRTRACE
399  printk("%p gpr[%d]<-csr=%08x\n",
400  (void *) (xcp->cp0_epc),
401  MIPSInst_RT(ir), value);
402 #endif
403  }
404  else if (MIPSInst_RD(ir) == FPCREG_RID)
405  value = 0;
406  else
407  value = 0;
408  if (MIPSInst_RT(ir))
409  xcp->regs[MIPSInst_RT(ir)] = value;
410  break;
411  }
412 
413  case ctc_op:{
414  /* copregister rd <- rt */
415  u32 value;
416 
417  if (MIPSInst_RT(ir) == 0)
418  value = 0;
419  else
420  value = xcp->regs[MIPSInst_RT(ir)];
421 
422  /* we only have one writable control reg
423  */
424  if (MIPSInst_RD(ir) == FPCREG_CSR) {
425 #ifdef CSRTRACE
426  printk("%p gpr[%d]->csr=%08x\n",
427  (void *) (xcp->cp0_epc),
428  MIPSInst_RT(ir), value);
429 #endif
430 
431  /*
432  * Don't write reserved bits,
433  * and convert to ieee library modes
434  */
435  ctx->fcr31 = (value &
436  ~(FPU_CSR_RSVD | FPU_CSR_RM)) |
437  ieee_rm[modeindex(value)];
438  }
439  if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
440  return SIGFPE;
441  }
442  break;
443  }
444 
445  case bc_op:{
446  int likely = 0;
447 
448  if (xcp->cp0_cause & CAUSEF_BD)
449  return SIGILL;
450 
451 #if __mips >= 4
452  cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
453 #else
454  cond = ctx->fcr31 & FPU_CSR_COND;
455 #endif
456  switch (MIPSInst_RT(ir) & 3) {
457  case bcfl_op:
458  likely = 1;
459  case bcf_op:
460  cond = !cond;
461  break;
462  case bctl_op:
463  likely = 1;
464  case bct_op:
465  break;
466  default:
467  /* thats an illegal instruction */
468  return SIGILL;
469  }
470 
471  xcp->cp0_cause |= CAUSEF_BD;
472  if (cond) {
473  /* branch taken: emulate dslot
474  * instruction
475  */
476  xcp->cp0_epc += 4;
477  contpc = (xcp->cp0_epc +
478  (MIPSInst_SIMM(ir) << 2));
479 
480  if (!access_ok(VERIFY_READ, xcp->cp0_epc,
481  sizeof(mips_instruction))) {
483  *fault_addr = (mips_instruction __user *)xcp->cp0_epc;
484  return SIGBUS;
485  }
486  if (__get_user(ir,
487  (mips_instruction __user *) xcp->cp0_epc)) {
489  *fault_addr = (mips_instruction __user *)xcp->cp0_epc;
490  return SIGSEGV;
491  }
492 
493  switch (MIPSInst_OPCODE(ir)) {
494  case lwc1_op:
495  case swc1_op:
496 #if (__mips >= 2 || defined(__mips64))
497  case ldc1_op:
498  case sdc1_op:
499 #endif
500  case cop1_op:
501 #if __mips >= 4 && __mips != 32
502  case cop1x_op:
503 #endif
504  /* its one of ours */
505  goto emul;
506 #if __mips >= 4
507  case spec_op:
508  if (MIPSInst_FUNC(ir) == movc_op)
509  goto emul;
510  break;
511 #endif
512  }
513 
514  /*
515  * Single step the non-cp1
516  * instruction in the dslot
517  */
518  return mips_dsemul(xcp, ir, contpc);
519  }
520  else {
521  /* branch not taken */
522  if (likely) {
523  /*
524  * branch likely nullifies
525  * dslot if not taken
526  */
527  xcp->cp0_epc += 4;
528  contpc += 4;
529  /*
530  * else continue & execute
531  * dslot as normal insn
532  */
533  }
534  }
535  break;
536  }
537 
538  default:
539  if (!(MIPSInst_RS(ir) & 0x10))
540  return SIGILL;
541  {
542  int sig;
543 
544  /* a real fpu computation instruction */
545  if ((sig = fpu_emu(xcp, ctx, ir)))
546  return sig;
547  }
548  }
549  break;
550 
551 #if __mips >= 4 && __mips != 32
552  case cop1x_op:{
553  int sig = fpux_emu(xcp, ctx, ir, fault_addr);
554  if (sig)
555  return sig;
556  break;
557  }
558 #endif
559 
560 #if __mips >= 4
561  case spec_op:
562  if (MIPSInst_FUNC(ir) != movc_op)
563  return SIGILL;
564  cond = fpucondbit[MIPSInst_RT(ir) >> 2];
565  if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
566  xcp->regs[MIPSInst_RD(ir)] =
567  xcp->regs[MIPSInst_RS(ir)];
568  break;
569 #endif
570 
571  default:
572  return SIGILL;
573  }
574 
575  /* we did it !! */
576  xcp->cp0_epc = contpc;
577  xcp->cp0_cause &= ~CAUSEF_BD;
578 
579  return 0;
580 }
581 
582 /*
583  * Conversion table from MIPS compare ops 48-63
584  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
585  */
586 static const unsigned char cmptab[8] = {
587  0, /* cmp_0 (sig) cmp_sf */
588  IEEE754_CUN, /* cmp_un (sig) cmp_ngle */
589  IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */
590  IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */
591  IEEE754_CLT, /* cmp_olt (sig) cmp_lt */
592  IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */
593  IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */
594  IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */
595 };
596 
597 
598 #if __mips >= 4 && __mips != 32
599 
600 /*
601  * Additional MIPS4 instructions
602  */
603 
604 #define DEF3OP(name, p, f1, f2, f3) \
605 static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
606  ieee754##p t) \
607 { \
608  struct _ieee754_csr ieee754_csr_save; \
609  s = f1(s, t); \
610  ieee754_csr_save = ieee754_csr; \
611  s = f2(s, r); \
612  ieee754_csr_save.cx |= ieee754_csr.cx; \
613  ieee754_csr_save.sx |= ieee754_csr.sx; \
614  s = f3(s); \
615  ieee754_csr.cx |= ieee754_csr_save.cx; \
616  ieee754_csr.sx |= ieee754_csr_save.sx; \
617  return s; \
618 }
619 
620 static ieee754dp fpemu_dp_recip(ieee754dp d)
621 {
622  return ieee754dp_div(ieee754dp_one(0), d);
623 }
624 
625 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
626 {
628 }
629 
630 static ieee754sp fpemu_sp_recip(ieee754sp s)
631 {
632  return ieee754sp_div(ieee754sp_one(0), s);
633 }
634 
635 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
636 {
638 }
639 
648 
649 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
650  mips_instruction ir, void *__user *fault_addr)
651 {
652  unsigned rcsr = 0; /* resulting csr */
653 
654  MIPS_FPU_EMU_INC_STATS(cp1xops);
655 
656  switch (MIPSInst_FMA_FFMT(ir)) {
657  case s_fmt:{ /* 0 */
658 
659  ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
660  ieee754sp fd, fr, fs, ft;
661  u32 __user *va;
662  u32 val;
663 
664  switch (MIPSInst_FUNC(ir)) {
665  case lwxc1_op:
666  va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
667  xcp->regs[MIPSInst_FT(ir)]);
668 
669  MIPS_FPU_EMU_INC_STATS(loads);
670  if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
672  *fault_addr = va;
673  return SIGBUS;
674  }
675  if (__get_user(val, va)) {
677  *fault_addr = va;
678  return SIGSEGV;
679  }
680  SITOREG(val, MIPSInst_FD(ir));
681  break;
682 
683  case swxc1_op:
684  va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
685  xcp->regs[MIPSInst_FT(ir)]);
686 
687  MIPS_FPU_EMU_INC_STATS(stores);
688 
689  SIFROMREG(val, MIPSInst_FS(ir));
690  if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
692  *fault_addr = va;
693  return SIGBUS;
694  }
695  if (put_user(val, va)) {
697  *fault_addr = va;
698  return SIGSEGV;
699  }
700  break;
701 
702  case madd_s_op:
703  handler = fpemu_sp_madd;
704  goto scoptop;
705  case msub_s_op:
706  handler = fpemu_sp_msub;
707  goto scoptop;
708  case nmadd_s_op:
709  handler = fpemu_sp_nmadd;
710  goto scoptop;
711  case nmsub_s_op:
712  handler = fpemu_sp_nmsub;
713  goto scoptop;
714 
715  scoptop:
716  SPFROMREG(fr, MIPSInst_FR(ir));
717  SPFROMREG(fs, MIPSInst_FS(ir));
718  SPFROMREG(ft, MIPSInst_FT(ir));
719  fd = (*handler) (fr, fs, ft);
720  SPTOREG(fd, MIPSInst_FD(ir));
721 
722  copcsr:
723  if (ieee754_cxtest(IEEE754_INEXACT))
724  rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
725  if (ieee754_cxtest(IEEE754_UNDERFLOW))
726  rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
727  if (ieee754_cxtest(IEEE754_OVERFLOW))
728  rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
729  if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
730  rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
731 
732  ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
733  if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
734  /*printk ("SIGFPE: fpu csr = %08x\n",
735  ctx->fcr31); */
736  return SIGFPE;
737  }
738 
739  break;
740 
741  default:
742  return SIGILL;
743  }
744  break;
745  }
746 
747  case d_fmt:{ /* 1 */
748  ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
749  ieee754dp fd, fr, fs, ft;
750  u64 __user *va;
751  u64 val;
752 
753  switch (MIPSInst_FUNC(ir)) {
754  case ldxc1_op:
755  va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
756  xcp->regs[MIPSInst_FT(ir)]);
757 
758  MIPS_FPU_EMU_INC_STATS(loads);
759  if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
761  *fault_addr = va;
762  return SIGBUS;
763  }
764  if (__get_user(val, va)) {
766  *fault_addr = va;
767  return SIGSEGV;
768  }
769  DITOREG(val, MIPSInst_FD(ir));
770  break;
771 
772  case sdxc1_op:
773  va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
774  xcp->regs[MIPSInst_FT(ir)]);
775 
776  MIPS_FPU_EMU_INC_STATS(stores);
777  DIFROMREG(val, MIPSInst_FS(ir));
778  if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
780  *fault_addr = va;
781  return SIGBUS;
782  }
783  if (__put_user(val, va)) {
785  *fault_addr = va;
786  return SIGSEGV;
787  }
788  break;
789 
790  case madd_d_op:
791  handler = fpemu_dp_madd;
792  goto dcoptop;
793  case msub_d_op:
794  handler = fpemu_dp_msub;
795  goto dcoptop;
796  case nmadd_d_op:
797  handler = fpemu_dp_nmadd;
798  goto dcoptop;
799  case nmsub_d_op:
800  handler = fpemu_dp_nmsub;
801  goto dcoptop;
802 
803  dcoptop:
804  DPFROMREG(fr, MIPSInst_FR(ir));
805  DPFROMREG(fs, MIPSInst_FS(ir));
806  DPFROMREG(ft, MIPSInst_FT(ir));
807  fd = (*handler) (fr, fs, ft);
808  DPTOREG(fd, MIPSInst_FD(ir));
809  goto copcsr;
810 
811  default:
812  return SIGILL;
813  }
814  break;
815  }
816 
817  case 0x7: /* 7 */
818  if (MIPSInst_FUNC(ir) != pfetch_op) {
819  return SIGILL;
820  }
821  /* ignore prefx operation */
822  break;
823 
824  default:
825  return SIGILL;
826  }
827 
828  return 0;
829 }
830 #endif
831 
832 
833 
834 /*
835  * Emulate a single COP1 arithmetic instruction.
836  */
837 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
838  mips_instruction ir)
839 {
840  int rfmt; /* resulting format */
841  unsigned rcsr = 0; /* resulting csr */
842  unsigned cond;
843  union {
844  ieee754dp d;
845  ieee754sp s;
846  int w;
847 #ifdef __mips64
848  s64 l;
849 #endif
850  } rv; /* resulting value */
851 
852  MIPS_FPU_EMU_INC_STATS(cp1ops);
853  switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
854  case s_fmt:{ /* 0 */
855  union {
856  ieee754sp(*b) (ieee754sp, ieee754sp);
857  ieee754sp(*u) (ieee754sp);
858  } handler;
859 
860  switch (MIPSInst_FUNC(ir)) {
861  /* binary ops */
862  case fadd_op:
864  goto scopbop;
865  case fsub_op:
867  goto scopbop;
868  case fmul_op:
870  goto scopbop;
871  case fdiv_op:
873  goto scopbop;
874 
875  /* unary ops */
876 #if __mips >= 2 || defined(__mips64)
877  case fsqrt_op:
879  goto scopuop;
880 #endif
881 #if __mips >= 4 && __mips != 32
882  case frsqrt_op:
883  handler.u = fpemu_sp_rsqrt;
884  goto scopuop;
885  case frecip_op:
886  handler.u = fpemu_sp_recip;
887  goto scopuop;
888 #endif
889 #if __mips >= 4
890  case fmovc_op:
891  cond = fpucondbit[MIPSInst_FT(ir) >> 2];
892  if (((ctx->fcr31 & cond) != 0) !=
893  ((MIPSInst_FT(ir) & 1) != 0))
894  return 0;
895  SPFROMREG(rv.s, MIPSInst_FS(ir));
896  break;
897  case fmovz_op:
898  if (xcp->regs[MIPSInst_FT(ir)] != 0)
899  return 0;
900  SPFROMREG(rv.s, MIPSInst_FS(ir));
901  break;
902  case fmovn_op:
903  if (xcp->regs[MIPSInst_FT(ir)] == 0)
904  return 0;
905  SPFROMREG(rv.s, MIPSInst_FS(ir));
906  break;
907 #endif
908  case fabs_op:
910  goto scopuop;
911  case fneg_op:
913  goto scopuop;
914  case fmov_op:
915  /* an easy one */
916  SPFROMREG(rv.s, MIPSInst_FS(ir));
917  goto copcsr;
918 
919  /* binary op on handler */
920  scopbop:
921  {
922  ieee754sp fs, ft;
923 
924  SPFROMREG(fs, MIPSInst_FS(ir));
925  SPFROMREG(ft, MIPSInst_FT(ir));
926 
927  rv.s = (*handler.b) (fs, ft);
928  goto copcsr;
929  }
930  scopuop:
931  {
932  ieee754sp fs;
933 
934  SPFROMREG(fs, MIPSInst_FS(ir));
935  rv.s = (*handler.u) (fs);
936  goto copcsr;
937  }
938  copcsr:
939  if (ieee754_cxtest(IEEE754_INEXACT))
940  rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
941  if (ieee754_cxtest(IEEE754_UNDERFLOW))
942  rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
943  if (ieee754_cxtest(IEEE754_OVERFLOW))
944  rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
945  if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
946  rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
947  if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
948  rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
949  break;
950 
951  /* unary conv ops */
952  case fcvts_op:
953  return SIGILL; /* not defined */
954  case fcvtd_op:{
955  ieee754sp fs;
956 
957  SPFROMREG(fs, MIPSInst_FS(ir));
958  rv.d = ieee754dp_fsp(fs);
959  rfmt = d_fmt;
960  goto copcsr;
961  }
962  case fcvtw_op:{
963  ieee754sp fs;
964 
965  SPFROMREG(fs, MIPSInst_FS(ir));
966  rv.w = ieee754sp_tint(fs);
967  rfmt = w_fmt;
968  goto copcsr;
969  }
970 
971 #if __mips >= 2 || defined(__mips64)
972  case fround_op:
973  case ftrunc_op:
974  case fceil_op:
975  case ffloor_op:{
976  unsigned int oldrm = ieee754_csr.rm;
977  ieee754sp fs;
978 
979  SPFROMREG(fs, MIPSInst_FS(ir));
980  ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
981  rv.w = ieee754sp_tint(fs);
982  ieee754_csr.rm = oldrm;
983  rfmt = w_fmt;
984  goto copcsr;
985  }
986 #endif /* __mips >= 2 */
987 
988 #if defined(__mips64)
989  case fcvtl_op:{
990  ieee754sp fs;
991 
992  SPFROMREG(fs, MIPSInst_FS(ir));
993  rv.l = ieee754sp_tlong(fs);
994  rfmt = l_fmt;
995  goto copcsr;
996  }
997 
998  case froundl_op:
999  case ftruncl_op:
1000  case fceill_op:
1001  case ffloorl_op:{
1002  unsigned int oldrm = ieee754_csr.rm;
1003  ieee754sp fs;
1004 
1005  SPFROMREG(fs, MIPSInst_FS(ir));
1006  ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1007  rv.l = ieee754sp_tlong(fs);
1008  ieee754_csr.rm = oldrm;
1009  rfmt = l_fmt;
1010  goto copcsr;
1011  }
1012 #endif /* defined(__mips64) */
1013 
1014  default:
1015  if (MIPSInst_FUNC(ir) >= fcmp_op) {
1016  unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1017  ieee754sp fs, ft;
1018 
1019  SPFROMREG(fs, MIPSInst_FS(ir));
1020  SPFROMREG(ft, MIPSInst_FT(ir));
1021  rv.w = ieee754sp_cmp(fs, ft,
1022  cmptab[cmpop & 0x7], cmpop & 0x8);
1023  rfmt = -1;
1024  if ((cmpop & 0x8) && ieee754_cxtest
1026  rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1027  else
1028  goto copcsr;
1029 
1030  }
1031  else {
1032  return SIGILL;
1033  }
1034  break;
1035  }
1036  break;
1037  }
1038 
1039  case d_fmt:{
1040  union {
1041  ieee754dp(*b) (ieee754dp, ieee754dp);
1042  ieee754dp(*u) (ieee754dp);
1043  } handler;
1044 
1045  switch (MIPSInst_FUNC(ir)) {
1046  /* binary ops */
1047  case fadd_op:
1048  handler.b = ieee754dp_add;
1049  goto dcopbop;
1050  case fsub_op:
1051  handler.b = ieee754dp_sub;
1052  goto dcopbop;
1053  case fmul_op:
1054  handler.b = ieee754dp_mul;
1055  goto dcopbop;
1056  case fdiv_op:
1057  handler.b = ieee754dp_div;
1058  goto dcopbop;
1059 
1060  /* unary ops */
1061 #if __mips >= 2 || defined(__mips64)
1062  case fsqrt_op:
1063  handler.u = ieee754dp_sqrt;
1064  goto dcopuop;
1065 #endif
1066 #if __mips >= 4 && __mips != 32
1067  case frsqrt_op:
1068  handler.u = fpemu_dp_rsqrt;
1069  goto dcopuop;
1070  case frecip_op:
1071  handler.u = fpemu_dp_recip;
1072  goto dcopuop;
1073 #endif
1074 #if __mips >= 4
1075  case fmovc_op:
1076  cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1077  if (((ctx->fcr31 & cond) != 0) !=
1078  ((MIPSInst_FT(ir) & 1) != 0))
1079  return 0;
1080  DPFROMREG(rv.d, MIPSInst_FS(ir));
1081  break;
1082  case fmovz_op:
1083  if (xcp->regs[MIPSInst_FT(ir)] != 0)
1084  return 0;
1085  DPFROMREG(rv.d, MIPSInst_FS(ir));
1086  break;
1087  case fmovn_op:
1088  if (xcp->regs[MIPSInst_FT(ir)] == 0)
1089  return 0;
1090  DPFROMREG(rv.d, MIPSInst_FS(ir));
1091  break;
1092 #endif
1093  case fabs_op:
1094  handler.u = ieee754dp_abs;
1095  goto dcopuop;
1096 
1097  case fneg_op:
1098  handler.u = ieee754dp_neg;
1099  goto dcopuop;
1100 
1101  case fmov_op:
1102  /* an easy one */
1103  DPFROMREG(rv.d, MIPSInst_FS(ir));
1104  goto copcsr;
1105 
1106  /* binary op on handler */
1107  dcopbop:{
1108  ieee754dp fs, ft;
1109 
1110  DPFROMREG(fs, MIPSInst_FS(ir));
1111  DPFROMREG(ft, MIPSInst_FT(ir));
1112 
1113  rv.d = (*handler.b) (fs, ft);
1114  goto copcsr;
1115  }
1116  dcopuop:{
1117  ieee754dp fs;
1118 
1119  DPFROMREG(fs, MIPSInst_FS(ir));
1120  rv.d = (*handler.u) (fs);
1121  goto copcsr;
1122  }
1123 
1124  /* unary conv ops */
1125  case fcvts_op:{
1126  ieee754dp fs;
1127 
1128  DPFROMREG(fs, MIPSInst_FS(ir));
1129  rv.s = ieee754sp_fdp(fs);
1130  rfmt = s_fmt;
1131  goto copcsr;
1132  }
1133  case fcvtd_op:
1134  return SIGILL; /* not defined */
1135 
1136  case fcvtw_op:{
1137  ieee754dp fs;
1138 
1139  DPFROMREG(fs, MIPSInst_FS(ir));
1140  rv.w = ieee754dp_tint(fs); /* wrong */
1141  rfmt = w_fmt;
1142  goto copcsr;
1143  }
1144 
1145 #if __mips >= 2 || defined(__mips64)
1146  case fround_op:
1147  case ftrunc_op:
1148  case fceil_op:
1149  case ffloor_op:{
1150  unsigned int oldrm = ieee754_csr.rm;
1151  ieee754dp fs;
1152 
1153  DPFROMREG(fs, MIPSInst_FS(ir));
1154  ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1155  rv.w = ieee754dp_tint(fs);
1156  ieee754_csr.rm = oldrm;
1157  rfmt = w_fmt;
1158  goto copcsr;
1159  }
1160 #endif
1161 
1162 #if defined(__mips64)
1163  case fcvtl_op:{
1164  ieee754dp fs;
1165 
1166  DPFROMREG(fs, MIPSInst_FS(ir));
1167  rv.l = ieee754dp_tlong(fs);
1168  rfmt = l_fmt;
1169  goto copcsr;
1170  }
1171 
1172  case froundl_op:
1173  case ftruncl_op:
1174  case fceill_op:
1175  case ffloorl_op:{
1176  unsigned int oldrm = ieee754_csr.rm;
1177  ieee754dp fs;
1178 
1179  DPFROMREG(fs, MIPSInst_FS(ir));
1180  ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1181  rv.l = ieee754dp_tlong(fs);
1182  ieee754_csr.rm = oldrm;
1183  rfmt = l_fmt;
1184  goto copcsr;
1185  }
1186 #endif /* __mips >= 3 */
1187 
1188  default:
1189  if (MIPSInst_FUNC(ir) >= fcmp_op) {
1190  unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1191  ieee754dp fs, ft;
1192 
1193  DPFROMREG(fs, MIPSInst_FS(ir));
1194  DPFROMREG(ft, MIPSInst_FT(ir));
1195  rv.w = ieee754dp_cmp(fs, ft,
1196  cmptab[cmpop & 0x7], cmpop & 0x8);
1197  rfmt = -1;
1198  if ((cmpop & 0x8)
1199  &&
1200  ieee754_cxtest
1202  rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1203  else
1204  goto copcsr;
1205 
1206  }
1207  else {
1208  return SIGILL;
1209  }
1210  break;
1211  }
1212  break;
1213  }
1214 
1215  case w_fmt:{
1216  ieee754sp fs;
1217 
1218  switch (MIPSInst_FUNC(ir)) {
1219  case fcvts_op:
1220  /* convert word to single precision real */
1221  SPFROMREG(fs, MIPSInst_FS(ir));
1222  rv.s = ieee754sp_fint(fs.bits);
1223  rfmt = s_fmt;
1224  goto copcsr;
1225  case fcvtd_op:
1226  /* convert word to double precision real */
1227  SPFROMREG(fs, MIPSInst_FS(ir));
1228  rv.d = ieee754dp_fint(fs.bits);
1229  rfmt = d_fmt;
1230  goto copcsr;
1231  default:
1232  return SIGILL;
1233  }
1234  break;
1235  }
1236 
1237 #if defined(__mips64)
1238  case l_fmt:{
1239  switch (MIPSInst_FUNC(ir)) {
1240  case fcvts_op:
1241  /* convert long to single precision real */
1242  rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1243  rfmt = s_fmt;
1244  goto copcsr;
1245  case fcvtd_op:
1246  /* convert long to double precision real */
1247  rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1248  rfmt = d_fmt;
1249  goto copcsr;
1250  default:
1251  return SIGILL;
1252  }
1253  break;
1254  }
1255 #endif
1256 
1257  default:
1258  return SIGILL;
1259  }
1260 
1261  /*
1262  * Update the fpu CSR register for this operation.
1263  * If an exception is required, generate a tidy SIGFPE exception,
1264  * without updating the result register.
1265  * Note: cause exception bits do not accumulate, they are rewritten
1266  * for each op; only the flag/sticky bits accumulate.
1267  */
1268  ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1269  if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1270  /*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1271  return SIGFPE;
1272  }
1273 
1274  /*
1275  * Now we can safely write the result back to the register file.
1276  */
1277  switch (rfmt) {
1278  case -1:{
1279 #if __mips >= 4
1280  cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1281 #else
1282  cond = FPU_CSR_COND;
1283 #endif
1284  if (rv.w)
1285  ctx->fcr31 |= cond;
1286  else
1287  ctx->fcr31 &= ~cond;
1288  break;
1289  }
1290  case d_fmt:
1291  DPTOREG(rv.d, MIPSInst_FD(ir));
1292  break;
1293  case s_fmt:
1294  SPTOREG(rv.s, MIPSInst_FD(ir));
1295  break;
1296  case w_fmt:
1297  SITOREG(rv.w, MIPSInst_FD(ir));
1298  break;
1299 #if defined(__mips64)
1300  case l_fmt:
1301  DITOREG(rv.l, MIPSInst_FD(ir));
1302  break;
1303 #endif
1304  default:
1305  return SIGILL;
1306  }
1307 
1308  return 0;
1309 }
1310 
1311 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1312  int has_fpu, void *__user *fault_addr)
1313 {
1314  unsigned long oldepc, prevepc;
1316  int sig = 0;
1317 
1318  oldepc = xcp->cp0_epc;
1319  do {
1320  prevepc = xcp->cp0_epc;
1321 
1322  if (!access_ok(VERIFY_READ, xcp->cp0_epc, sizeof(mips_instruction))) {
1324  *fault_addr = (mips_instruction __user *)xcp->cp0_epc;
1325  return SIGBUS;
1326  }
1327  if (__get_user(insn, (mips_instruction __user *) xcp->cp0_epc)) {
1329  *fault_addr = (mips_instruction __user *)xcp->cp0_epc;
1330  return SIGSEGV;
1331  }
1332  if (insn == 0)
1333  xcp->cp0_epc += 4; /* skip nops */
1334  else {
1335  /*
1336  * The 'ieee754_csr' is an alias of
1337  * ctx->fcr31. No need to copy ctx->fcr31 to
1338  * ieee754_csr. But ieee754_csr.rm is ieee
1339  * library modes. (not mips rounding mode)
1340  */
1341  /* convert to ieee library modes */
1342  ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
1343  sig = cop1Emulate(xcp, ctx, fault_addr);
1344  /* revert to mips rounding mode */
1345  ieee754_csr.rm = mips_rm[ieee754_csr.rm];
1346  }
1347 
1348  if (has_fpu)
1349  break;
1350  if (sig)
1351  break;
1352 
1353  cond_resched();
1354  } while (xcp->cp0_epc > prevepc);
1355 
1356  /* SIGILL indicates a non-fpu instruction */
1357  if (sig == SIGILL && xcp->cp0_epc != oldepc)
1358  /* but if epc has advanced, then ignore it */
1359  sig = 0;
1360 
1361  return sig;
1362 }
1363 
1364 #ifdef CONFIG_DEBUG_FS
1365 
1366 static int fpuemu_stat_get(void *data, u64 *val)
1367 {
1368  int cpu;
1369  unsigned long sum = 0;
1370  for_each_online_cpu(cpu) {
1371  struct mips_fpu_emulator_stats *ps;
1372  local_t *pv;
1373  ps = &per_cpu(fpuemustats, cpu);
1374  pv = (void *)ps + (unsigned long)data;
1375  sum += local_read(pv);
1376  }
1377  *val = sum;
1378  return 0;
1379 }
1380 DEFINE_SIMPLE_ATTRIBUTE(fops_fpuemu_stat, fpuemu_stat_get, NULL, "%llu\n");
1381 
1382 extern struct dentry *mips_debugfs_dir;
1383 static int __init debugfs_fpuemu(void)
1384 {
1385  struct dentry *d, *dir;
1386 
1387  if (!mips_debugfs_dir)
1388  return -ENODEV;
1389  dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
1390  if (!dir)
1391  return -ENOMEM;
1392 
1393 #define FPU_STAT_CREATE(M) \
1394  do { \
1395  d = debugfs_create_file(#M , S_IRUGO, dir, \
1396  (void *)offsetof(struct mips_fpu_emulator_stats, M), \
1397  &fops_fpuemu_stat); \
1398  if (!d) \
1399  return -ENOMEM; \
1400  } while (0)
1401 
1402  FPU_STAT_CREATE(emulated);
1403  FPU_STAT_CREATE(loads);
1404  FPU_STAT_CREATE(stores);
1405  FPU_STAT_CREATE(cp1ops);
1406  FPU_STAT_CREATE(cp1xops);
1407  FPU_STAT_CREATE(errors);
1408 
1409  return 0;
1410 }
1411 __initcall(debugfs_fpuemu);
1412 #endif