Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
loop.c
Go to the documentation of this file.
1 /*
2  * linux/drivers/block/loop.c
3  *
4  * Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - [email protected] Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <[email protected]> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, [email protected]
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <[email protected]> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <[email protected]>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <[email protected]>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <[email protected]>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/kthread.h>
75 #include <linux/splice.h>
76 #include <linux/sysfs.h>
77 #include <linux/miscdevice.h>
78 #include <linux/falloc.h>
79 
80 #include <asm/uaccess.h>
81 
82 static DEFINE_IDR(loop_index_idr);
83 static DEFINE_MUTEX(loop_index_mutex);
84 
85 static int max_part;
86 static int part_shift;
87 
88 /*
89  * Transfer functions
90  */
91 static int transfer_none(struct loop_device *lo, int cmd,
92  struct page *raw_page, unsigned raw_off,
93  struct page *loop_page, unsigned loop_off,
94  int size, sector_t real_block)
95 {
96  char *raw_buf = kmap_atomic(raw_page) + raw_off;
97  char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 
99  if (cmd == READ)
100  memcpy(loop_buf, raw_buf, size);
101  else
102  memcpy(raw_buf, loop_buf, size);
103 
104  kunmap_atomic(loop_buf);
105  kunmap_atomic(raw_buf);
106  cond_resched();
107  return 0;
108 }
109 
110 static int transfer_xor(struct loop_device *lo, int cmd,
111  struct page *raw_page, unsigned raw_off,
112  struct page *loop_page, unsigned loop_off,
113  int size, sector_t real_block)
114 {
115  char *raw_buf = kmap_atomic(raw_page) + raw_off;
116  char *loop_buf = kmap_atomic(loop_page) + loop_off;
117  char *in, *out, *key;
118  int i, keysize;
119 
120  if (cmd == READ) {
121  in = raw_buf;
122  out = loop_buf;
123  } else {
124  in = loop_buf;
125  out = raw_buf;
126  }
127 
128  key = lo->lo_encrypt_key;
129  keysize = lo->lo_encrypt_key_size;
130  for (i = 0; i < size; i++)
131  *out++ = *in++ ^ key[(i & 511) % keysize];
132 
133  kunmap_atomic(loop_buf);
134  kunmap_atomic(raw_buf);
135  cond_resched();
136  return 0;
137 }
138 
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 {
141  if (unlikely(info->lo_encrypt_key_size <= 0))
142  return -EINVAL;
143  return 0;
144 }
145 
146 static struct loop_func_table none_funcs = {
147  .number = LO_CRYPT_NONE,
148  .transfer = transfer_none,
149 };
150 
151 static struct loop_func_table xor_funcs = {
152  .number = LO_CRYPT_XOR,
153  .transfer = transfer_xor,
154  .init = xor_init
155 };
156 
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159  &none_funcs,
160  &xor_funcs
161 };
162 
163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
164 {
165  loff_t size, loopsize;
166 
167  /* Compute loopsize in bytes */
168  size = i_size_read(file->f_mapping->host);
169  loopsize = size - offset;
170  /* offset is beyond i_size, wierd but possible */
171  if (loopsize < 0)
172  return 0;
173 
174  if (sizelimit > 0 && sizelimit < loopsize)
175  loopsize = sizelimit;
176  /*
177  * Unfortunately, if we want to do I/O on the device,
178  * the number of 512-byte sectors has to fit into a sector_t.
179  */
180  return loopsize >> 9;
181 }
182 
183 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
184 {
185  return get_size(lo->lo_offset, lo->lo_sizelimit, file);
186 }
187 
188 static int
189 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
190 {
191  loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
192  sector_t x = (sector_t)size;
193 
194  if (unlikely((loff_t)x != size))
195  return -EFBIG;
196  if (lo->lo_offset != offset)
197  lo->lo_offset = offset;
198  if (lo->lo_sizelimit != sizelimit)
199  lo->lo_sizelimit = sizelimit;
200  set_capacity(lo->lo_disk, x);
201  return 0;
202 }
203 
204 static inline int
205 lo_do_transfer(struct loop_device *lo, int cmd,
206  struct page *rpage, unsigned roffs,
207  struct page *lpage, unsigned loffs,
208  int size, sector_t rblock)
209 {
210  if (unlikely(!lo->transfer))
211  return 0;
212 
213  return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
214 }
215 
222 static int __do_lo_send_write(struct file *file,
223  u8 *buf, const int len, loff_t pos)
224 {
225  ssize_t bw;
226  mm_segment_t old_fs = get_fs();
227 
228  set_fs(get_ds());
229  bw = file->f_op->write(file, buf, len, &pos);
230  set_fs(old_fs);
231  if (likely(bw == len))
232  return 0;
233  printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
234  (unsigned long long)pos, len);
235  if (bw >= 0)
236  bw = -EIO;
237  return bw;
238 }
239 
246 static int do_lo_send_direct_write(struct loop_device *lo,
247  struct bio_vec *bvec, loff_t pos, struct page *page)
248 {
249  ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
250  kmap(bvec->bv_page) + bvec->bv_offset,
251  bvec->bv_len, pos);
252  kunmap(bvec->bv_page);
253  cond_resched();
254  return bw;
255 }
256 
264 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
265  loff_t pos, struct page *page)
266 {
267  int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
268  bvec->bv_offset, bvec->bv_len, pos >> 9);
269  if (likely(!ret))
270  return __do_lo_send_write(lo->lo_backing_file,
271  page_address(page), bvec->bv_len,
272  pos);
273  printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
274  "length %i.\n", (unsigned long long)pos, bvec->bv_len);
275  if (ret > 0)
276  ret = -EIO;
277  return ret;
278 }
279 
280 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
281 {
282  int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
283  struct page *page);
284  struct bio_vec *bvec;
285  struct page *page = NULL;
286  int i, ret = 0;
287 
288  if (lo->transfer != transfer_none) {
290  if (unlikely(!page))
291  goto fail;
292  kmap(page);
293  do_lo_send = do_lo_send_write;
294  } else {
295  do_lo_send = do_lo_send_direct_write;
296  }
297 
298  bio_for_each_segment(bvec, bio, i) {
299  ret = do_lo_send(lo, bvec, pos, page);
300  if (ret < 0)
301  break;
302  pos += bvec->bv_len;
303  }
304  if (page) {
305  kunmap(page);
306  __free_page(page);
307  }
308 out:
309  return ret;
310 fail:
311  printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
312  ret = -ENOMEM;
313  goto out;
314 }
315 
316 struct lo_read_data {
317  struct loop_device *lo;
318  struct page *page;
319  unsigned offset;
320  int bsize;
321 };
322 
323 static int
324 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
325  struct splice_desc *sd)
326 {
327  struct lo_read_data *p = sd->u.data;
328  struct loop_device *lo = p->lo;
329  struct page *page = buf->page;
330  sector_t IV;
331  int size;
332 
333  IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
334  (buf->offset >> 9);
335  size = sd->len;
336  if (size > p->bsize)
337  size = p->bsize;
338 
339  if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
340  printk(KERN_ERR "loop: transfer error block %ld\n",
341  page->index);
342  size = -EINVAL;
343  }
344 
346 
347  if (size > 0)
348  p->offset += size;
349 
350  return size;
351 }
352 
353 static int
354 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
355 {
356  return __splice_from_pipe(pipe, sd, lo_splice_actor);
357 }
358 
359 static ssize_t
360 do_lo_receive(struct loop_device *lo,
361  struct bio_vec *bvec, int bsize, loff_t pos)
362 {
363  struct lo_read_data cookie;
364  struct splice_desc sd;
365  struct file *file;
366  ssize_t retval;
367 
368  cookie.lo = lo;
369  cookie.page = bvec->bv_page;
370  cookie.offset = bvec->bv_offset;
371  cookie.bsize = bsize;
372 
373  sd.len = 0;
374  sd.total_len = bvec->bv_len;
375  sd.flags = 0;
376  sd.pos = pos;
377  sd.u.data = &cookie;
378 
379  file = lo->lo_backing_file;
380  retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
381 
382  return retval;
383 }
384 
385 static int
386 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
387 {
388  struct bio_vec *bvec;
389  ssize_t s;
390  int i;
391 
392  bio_for_each_segment(bvec, bio, i) {
393  s = do_lo_receive(lo, bvec, bsize, pos);
394  if (s < 0)
395  return s;
396 
397  if (s != bvec->bv_len) {
398  zero_fill_bio(bio);
399  break;
400  }
401  pos += bvec->bv_len;
402  }
403  return 0;
404 }
405 
406 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
407 {
408  loff_t pos;
409  int ret;
410 
411  pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
412 
413  if (bio_rw(bio) == WRITE) {
414  struct file *file = lo->lo_backing_file;
415 
416  if (bio->bi_rw & REQ_FLUSH) {
417  ret = vfs_fsync(file, 0);
418  if (unlikely(ret && ret != -EINVAL)) {
419  ret = -EIO;
420  goto out;
421  }
422  }
423 
424  /*
425  * We use punch hole to reclaim the free space used by the
426  * image a.k.a. discard. However we do not support discard if
427  * encryption is enabled, because it may give an attacker
428  * useful information.
429  */
430  if (bio->bi_rw & REQ_DISCARD) {
431  struct file *file = lo->lo_backing_file;
433 
434  if ((!file->f_op->fallocate) ||
435  lo->lo_encrypt_key_size) {
436  ret = -EOPNOTSUPP;
437  goto out;
438  }
439  ret = file->f_op->fallocate(file, mode, pos,
440  bio->bi_size);
441  if (unlikely(ret && ret != -EINVAL &&
442  ret != -EOPNOTSUPP))
443  ret = -EIO;
444  goto out;
445  }
446 
447  ret = lo_send(lo, bio, pos);
448 
449  if ((bio->bi_rw & REQ_FUA) && !ret) {
450  ret = vfs_fsync(file, 0);
451  if (unlikely(ret && ret != -EINVAL))
452  ret = -EIO;
453  }
454  } else
455  ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
456 
457 out:
458  return ret;
459 }
460 
461 /*
462  * Add bio to back of pending list
463  */
464 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
465 {
466  bio_list_add(&lo->lo_bio_list, bio);
467 }
468 
469 /*
470  * Grab first pending buffer
471  */
472 static struct bio *loop_get_bio(struct loop_device *lo)
473 {
474  return bio_list_pop(&lo->lo_bio_list);
475 }
476 
477 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
478 {
479  struct loop_device *lo = q->queuedata;
480  int rw = bio_rw(old_bio);
481 
482  if (rw == READA)
483  rw = READ;
484 
485  BUG_ON(!lo || (rw != READ && rw != WRITE));
486 
487  spin_lock_irq(&lo->lo_lock);
488  if (lo->lo_state != Lo_bound)
489  goto out;
490  if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
491  goto out;
492  loop_add_bio(lo, old_bio);
493  wake_up(&lo->lo_event);
494  spin_unlock_irq(&lo->lo_lock);
495  return;
496 
497 out:
498  spin_unlock_irq(&lo->lo_lock);
499  bio_io_error(old_bio);
500 }
501 
503  struct file *file;
504  struct completion wait;
505 };
506 
507 static void do_loop_switch(struct loop_device *, struct switch_request *);
508 
509 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
510 {
511  if (unlikely(!bio->bi_bdev)) {
512  do_loop_switch(lo, bio->bi_private);
513  bio_put(bio);
514  } else {
515  int ret = do_bio_filebacked(lo, bio);
516  bio_endio(bio, ret);
517  }
518 }
519 
520 /*
521  * worker thread that handles reads/writes to file backed loop devices,
522  * to avoid blocking in our make_request_fn. it also does loop decrypting
523  * on reads for block backed loop, as that is too heavy to do from
524  * b_end_io context where irqs may be disabled.
525  *
526  * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
527  * calling kthread_stop(). Therefore once kthread_should_stop() is
528  * true, make_request will not place any more requests. Therefore
529  * once kthread_should_stop() is true and lo_bio is NULL, we are
530  * done with the loop.
531  */
532 static int loop_thread(void *data)
533 {
534  struct loop_device *lo = data;
535  struct bio *bio;
536 
537  set_user_nice(current, -20);
538 
539  while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
540 
542  !bio_list_empty(&lo->lo_bio_list) ||
544 
545  if (bio_list_empty(&lo->lo_bio_list))
546  continue;
547  spin_lock_irq(&lo->lo_lock);
548  bio = loop_get_bio(lo);
549  spin_unlock_irq(&lo->lo_lock);
550 
551  BUG_ON(!bio);
552  loop_handle_bio(lo, bio);
553  }
554 
555  return 0;
556 }
557 
558 /*
559  * loop_switch performs the hard work of switching a backing store.
560  * First it needs to flush existing IO, it does this by sending a magic
561  * BIO down the pipe. The completion of this BIO does the actual switch.
562  */
563 static int loop_switch(struct loop_device *lo, struct file *file)
564 {
565  struct switch_request w;
566  struct bio *bio = bio_alloc(GFP_KERNEL, 0);
567  if (!bio)
568  return -ENOMEM;
569  init_completion(&w.wait);
570  w.file = file;
571  bio->bi_private = &w;
572  bio->bi_bdev = NULL;
573  loop_make_request(lo->lo_queue, bio);
574  wait_for_completion(&w.wait);
575  return 0;
576 }
577 
578 /*
579  * Helper to flush the IOs in loop, but keeping loop thread running
580  */
581 static int loop_flush(struct loop_device *lo)
582 {
583  /* loop not yet configured, no running thread, nothing to flush */
584  if (!lo->lo_thread)
585  return 0;
586 
587  return loop_switch(lo, NULL);
588 }
589 
590 /*
591  * Do the actual switch; called from the BIO completion routine
592  */
593 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
594 {
595  struct file *file = p->file;
596  struct file *old_file = lo->lo_backing_file;
597  struct address_space *mapping;
598 
599  /* if no new file, only flush of queued bios requested */
600  if (!file)
601  goto out;
602 
603  mapping = file->f_mapping;
604  mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
605  lo->lo_backing_file = file;
606  lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
607  mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
608  lo->old_gfp_mask = mapping_gfp_mask(mapping);
609  mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
610 out:
611  complete(&p->wait);
612 }
613 
614 
615 /*
616  * loop_change_fd switched the backing store of a loopback device to
617  * a new file. This is useful for operating system installers to free up
618  * the original file and in High Availability environments to switch to
619  * an alternative location for the content in case of server meltdown.
620  * This can only work if the loop device is used read-only, and if the
621  * new backing store is the same size and type as the old backing store.
622  */
623 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
624  unsigned int arg)
625 {
626  struct file *file, *old_file;
627  struct inode *inode;
628  int error;
629 
630  error = -ENXIO;
631  if (lo->lo_state != Lo_bound)
632  goto out;
633 
634  /* the loop device has to be read-only */
635  error = -EINVAL;
636  if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
637  goto out;
638 
639  error = -EBADF;
640  file = fget(arg);
641  if (!file)
642  goto out;
643 
644  inode = file->f_mapping->host;
645  old_file = lo->lo_backing_file;
646 
647  error = -EINVAL;
648 
649  if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
650  goto out_putf;
651 
652  /* size of the new backing store needs to be the same */
653  if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
654  goto out_putf;
655 
656  /* and ... switch */
657  error = loop_switch(lo, file);
658  if (error)
659  goto out_putf;
660 
661  fput(old_file);
662  if (lo->lo_flags & LO_FLAGS_PARTSCAN)
663  ioctl_by_bdev(bdev, BLKRRPART, 0);
664  return 0;
665 
666  out_putf:
667  fput(file);
668  out:
669  return error;
670 }
671 
672 static inline int is_loop_device(struct file *file)
673 {
674  struct inode *i = file->f_mapping->host;
675 
676  return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
677 }
678 
679 /* loop sysfs attributes */
680 
681 static ssize_t loop_attr_show(struct device *dev, char *page,
682  ssize_t (*callback)(struct loop_device *, char *))
683 {
684  struct gendisk *disk = dev_to_disk(dev);
685  struct loop_device *lo = disk->private_data;
686 
687  return callback(lo, page);
688 }
689 
690 #define LOOP_ATTR_RO(_name) \
691 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
692 static ssize_t loop_attr_do_show_##_name(struct device *d, \
693  struct device_attribute *attr, char *b) \
694 { \
695  return loop_attr_show(d, b, loop_attr_##_name##_show); \
696 } \
697 static struct device_attribute loop_attr_##_name = \
698  __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
699 
700 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
701 {
702  ssize_t ret;
703  char *p = NULL;
704 
705  spin_lock_irq(&lo->lo_lock);
706  if (lo->lo_backing_file)
707  p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
708  spin_unlock_irq(&lo->lo_lock);
709 
710  if (IS_ERR_OR_NULL(p))
711  ret = PTR_ERR(p);
712  else {
713  ret = strlen(p);
714  memmove(buf, p, ret);
715  buf[ret++] = '\n';
716  buf[ret] = 0;
717  }
718 
719  return ret;
720 }
721 
722 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
723 {
724  return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
725 }
726 
727 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
728 {
729  return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
730 }
731 
732 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
733 {
734  int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
735 
736  return sprintf(buf, "%s\n", autoclear ? "1" : "0");
737 }
738 
739 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
740 {
741  int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
742 
743  return sprintf(buf, "%s\n", partscan ? "1" : "0");
744 }
745 
747 LOOP_ATTR_RO(offset);
748 LOOP_ATTR_RO(sizelimit);
749 LOOP_ATTR_RO(autoclear);
750 LOOP_ATTR_RO(partscan);
751 
752 static struct attribute *loop_attrs[] = {
753  &loop_attr_backing_file.attr,
754  &loop_attr_offset.attr,
755  &loop_attr_sizelimit.attr,
756  &loop_attr_autoclear.attr,
757  &loop_attr_partscan.attr,
758  NULL,
759 };
760 
761 static struct attribute_group loop_attribute_group = {
762  .name = "loop",
763  .attrs= loop_attrs,
764 };
765 
766 static int loop_sysfs_init(struct loop_device *lo)
767 {
768  return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
769  &loop_attribute_group);
770 }
771 
772 static void loop_sysfs_exit(struct loop_device *lo)
773 {
774  sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
775  &loop_attribute_group);
776 }
777 
778 static void loop_config_discard(struct loop_device *lo)
779 {
780  struct file *file = lo->lo_backing_file;
781  struct inode *inode = file->f_mapping->host;
782  struct request_queue *q = lo->lo_queue;
783 
784  /*
785  * We use punch hole to reclaim the free space used by the
786  * image a.k.a. discard. However we do support discard if
787  * encryption is enabled, because it may give an attacker
788  * useful information.
789  */
790  if ((!file->f_op->fallocate) ||
791  lo->lo_encrypt_key_size) {
792  q->limits.discard_granularity = 0;
793  q->limits.discard_alignment = 0;
794  q->limits.max_discard_sectors = 0;
795  q->limits.discard_zeroes_data = 0;
796  queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
797  return;
798  }
799 
800  q->limits.discard_granularity = inode->i_sb->s_blocksize;
801  q->limits.discard_alignment = 0;
802  q->limits.max_discard_sectors = UINT_MAX >> 9;
803  q->limits.discard_zeroes_data = 1;
804  queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
805 }
806 
807 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
808  struct block_device *bdev, unsigned int arg)
809 {
810  struct file *file, *f;
811  struct inode *inode;
812  struct address_space *mapping;
813  unsigned lo_blocksize;
814  int lo_flags = 0;
815  int error;
816  loff_t size;
817 
818  /* This is safe, since we have a reference from open(). */
819  __module_get(THIS_MODULE);
820 
821  error = -EBADF;
822  file = fget(arg);
823  if (!file)
824  goto out;
825 
826  error = -EBUSY;
827  if (lo->lo_state != Lo_unbound)
828  goto out_putf;
829 
830  /* Avoid recursion */
831  f = file;
832  while (is_loop_device(f)) {
833  struct loop_device *l;
834 
835  if (f->f_mapping->host->i_bdev == bdev)
836  goto out_putf;
837 
838  l = f->f_mapping->host->i_bdev->bd_disk->private_data;
839  if (l->lo_state == Lo_unbound) {
840  error = -EINVAL;
841  goto out_putf;
842  }
843  f = l->lo_backing_file;
844  }
845 
846  mapping = file->f_mapping;
847  inode = mapping->host;
848 
849  error = -EINVAL;
850  if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
851  goto out_putf;
852 
853  if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
854  !file->f_op->write)
855  lo_flags |= LO_FLAGS_READ_ONLY;
856 
857  lo_blocksize = S_ISBLK(inode->i_mode) ?
858  inode->i_bdev->bd_block_size : PAGE_SIZE;
859 
860  error = -EFBIG;
861  size = get_loop_size(lo, file);
862  if ((loff_t)(sector_t)size != size)
863  goto out_putf;
864 
865  error = 0;
866 
867  set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
868 
870  lo->lo_device = bdev;
871  lo->lo_flags = lo_flags;
872  lo->lo_backing_file = file;
873  lo->transfer = transfer_none;
874  lo->ioctl = NULL;
875  lo->lo_sizelimit = 0;
876  lo->old_gfp_mask = mapping_gfp_mask(mapping);
877  mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
878 
879  bio_list_init(&lo->lo_bio_list);
880 
881  /*
882  * set queue make_request_fn, and add limits based on lower level
883  * device
884  */
885  blk_queue_make_request(lo->lo_queue, loop_make_request);
886  lo->lo_queue->queuedata = lo;
887 
888  if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
890 
891  set_capacity(lo->lo_disk, size);
892  bd_set_size(bdev, size << 9);
893  loop_sysfs_init(lo);
894  /* let user-space know about the new size */
895  kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
896 
897  set_blocksize(bdev, lo_blocksize);
898 
899  lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
900  lo->lo_number);
901  if (IS_ERR(lo->lo_thread)) {
902  error = PTR_ERR(lo->lo_thread);
903  goto out_clr;
904  }
905  lo->lo_state = Lo_bound;
907  if (part_shift)
909  if (lo->lo_flags & LO_FLAGS_PARTSCAN)
910  ioctl_by_bdev(bdev, BLKRRPART, 0);
911  return 0;
912 
913 out_clr:
914  loop_sysfs_exit(lo);
915  lo->lo_thread = NULL;
916  lo->lo_device = NULL;
917  lo->lo_backing_file = NULL;
918  lo->lo_flags = 0;
919  set_capacity(lo->lo_disk, 0);
920  invalidate_bdev(bdev);
921  bd_set_size(bdev, 0);
922  kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
923  mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
924  lo->lo_state = Lo_unbound;
925  out_putf:
926  fput(file);
927  out:
928  /* This is safe: open() is still holding a reference. */
929  module_put(THIS_MODULE);
930  return error;
931 }
932 
933 static int
934 loop_release_xfer(struct loop_device *lo)
935 {
936  int err = 0;
937  struct loop_func_table *xfer = lo->lo_encryption;
938 
939  if (xfer) {
940  if (xfer->release)
941  err = xfer->release(lo);
942  lo->transfer = NULL;
943  lo->lo_encryption = NULL;
944  module_put(xfer->owner);
945  }
946  return err;
947 }
948 
949 static int
950 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
951  const struct loop_info64 *i)
952 {
953  int err = 0;
954 
955  if (xfer) {
956  struct module *owner = xfer->owner;
957 
958  if (!try_module_get(owner))
959  return -EINVAL;
960  if (xfer->init)
961  err = xfer->init(lo, i);
962  if (err)
963  module_put(owner);
964  else
965  lo->lo_encryption = xfer;
966  }
967  return err;
968 }
969 
970 static int loop_clr_fd(struct loop_device *lo)
971 {
972  struct file *filp = lo->lo_backing_file;
973  gfp_t gfp = lo->old_gfp_mask;
974  struct block_device *bdev = lo->lo_device;
975 
976  if (lo->lo_state != Lo_bound)
977  return -ENXIO;
978 
979  /*
980  * If we've explicitly asked to tear down the loop device,
981  * and it has an elevated reference count, set it for auto-teardown when
982  * the last reference goes away. This stops $!~#$@ udev from
983  * preventing teardown because it decided that it needs to run blkid on
984  * the loopback device whenever they appear. xfstests is notorious for
985  * failing tests because blkid via udev races with a losetup
986  * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
987  * command to fail with EBUSY.
988  */
989  if (lo->lo_refcnt > 1) {
992  return 0;
993  }
994 
995  if (filp == NULL)
996  return -EINVAL;
997 
998  spin_lock_irq(&lo->lo_lock);
999  lo->lo_state = Lo_rundown;
1000  spin_unlock_irq(&lo->lo_lock);
1001 
1002  kthread_stop(lo->lo_thread);
1003 
1004  spin_lock_irq(&lo->lo_lock);
1005  lo->lo_backing_file = NULL;
1006  spin_unlock_irq(&lo->lo_lock);
1007 
1008  loop_release_xfer(lo);
1009  lo->transfer = NULL;
1010  lo->ioctl = NULL;
1011  lo->lo_device = NULL;
1012  lo->lo_encryption = NULL;
1013  lo->lo_offset = 0;
1014  lo->lo_sizelimit = 0;
1015  lo->lo_encrypt_key_size = 0;
1016  lo->lo_thread = NULL;
1019  memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1020  if (bdev)
1021  invalidate_bdev(bdev);
1022  set_capacity(lo->lo_disk, 0);
1023  loop_sysfs_exit(lo);
1024  if (bdev) {
1025  bd_set_size(bdev, 0);
1026  /* let user-space know about this change */
1027  kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1028  }
1029  mapping_set_gfp_mask(filp->f_mapping, gfp);
1030  lo->lo_state = Lo_unbound;
1031  /* This is safe: open() is still holding a reference. */
1032  module_put(THIS_MODULE);
1033  if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1034  ioctl_by_bdev(bdev, BLKRRPART, 0);
1035  lo->lo_flags = 0;
1036  if (!part_shift)
1037  lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1038  mutex_unlock(&lo->lo_ctl_mutex);
1039  /*
1040  * Need not hold lo_ctl_mutex to fput backing file.
1041  * Calling fput holding lo_ctl_mutex triggers a circular
1042  * lock dependency possibility warning as fput can take
1043  * bd_mutex which is usually taken before lo_ctl_mutex.
1044  */
1045  fput(filp);
1046  return 0;
1047 }
1048 
1049 static int
1050 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1051 {
1052  int err;
1053  struct loop_func_table *xfer;
1054  kuid_t uid = current_uid();
1055 
1056  if (lo->lo_encrypt_key_size &&
1057  !uid_eq(lo->lo_key_owner, uid) &&
1059  return -EPERM;
1060  if (lo->lo_state != Lo_bound)
1061  return -ENXIO;
1062  if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1063  return -EINVAL;
1064 
1065  err = loop_release_xfer(lo);
1066  if (err)
1067  return err;
1068 
1069  if (info->lo_encrypt_type) {
1070  unsigned int type = info->lo_encrypt_type;
1071 
1072  if (type >= MAX_LO_CRYPT)
1073  return -EINVAL;
1074  xfer = xfer_funcs[type];
1075  if (xfer == NULL)
1076  return -EINVAL;
1077  } else
1078  xfer = NULL;
1079 
1080  err = loop_init_xfer(lo, xfer, info);
1081  if (err)
1082  return err;
1083 
1084  if (lo->lo_offset != info->lo_offset ||
1085  lo->lo_sizelimit != info->lo_sizelimit) {
1086  if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1087  return -EFBIG;
1088  }
1089  loop_config_discard(lo);
1090 
1093  lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1094  lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1095 
1096  if (!xfer)
1097  xfer = &none_funcs;
1098  lo->transfer = xfer->transfer;
1099  lo->ioctl = xfer->ioctl;
1100 
1101  if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1102  (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1104 
1105  if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1106  !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1107  lo->lo_flags |= LO_FLAGS_PARTSCAN;
1108  lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1110  }
1111 
1113  lo->lo_init[0] = info->lo_init[0];
1114  lo->lo_init[1] = info->lo_init[1];
1115  if (info->lo_encrypt_key_size) {
1117  info->lo_encrypt_key_size);
1118  lo->lo_key_owner = uid;
1119  }
1120 
1121  return 0;
1122 }
1123 
1124 static int
1125 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1126 {
1127  struct file *file = lo->lo_backing_file;
1128  struct kstat stat;
1129  int error;
1130 
1131  if (lo->lo_state != Lo_bound)
1132  return -ENXIO;
1133  error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1134  if (error)
1135  return error;
1136  memset(info, 0, sizeof(*info));
1137  info->lo_number = lo->lo_number;
1138  info->lo_device = huge_encode_dev(stat.dev);
1139  info->lo_inode = stat.ino;
1140  info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1141  info->lo_offset = lo->lo_offset;
1142  info->lo_sizelimit = lo->lo_sizelimit;
1143  info->lo_flags = lo->lo_flags;
1146  info->lo_encrypt_type =
1147  lo->lo_encryption ? lo->lo_encryption->number : 0;
1151  lo->lo_encrypt_key_size);
1152  }
1153  return 0;
1154 }
1155 
1156 static void
1157 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1158 {
1159  memset(info64, 0, sizeof(*info64));
1160  info64->lo_number = info->lo_number;
1161  info64->lo_device = info->lo_device;
1162  info64->lo_inode = info->lo_inode;
1163  info64->lo_rdevice = info->lo_rdevice;
1164  info64->lo_offset = info->lo_offset;
1165  info64->lo_sizelimit = 0;
1166  info64->lo_encrypt_type = info->lo_encrypt_type;
1167  info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1168  info64->lo_flags = info->lo_flags;
1169  info64->lo_init[0] = info->lo_init[0];
1170  info64->lo_init[1] = info->lo_init[1];
1171  if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1172  memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1173  else
1174  memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1176 }
1177 
1178 static int
1179 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1180 {
1181  memset(info, 0, sizeof(*info));
1182  info->lo_number = info64->lo_number;
1183  info->lo_device = info64->lo_device;
1184  info->lo_inode = info64->lo_inode;
1185  info->lo_rdevice = info64->lo_rdevice;
1186  info->lo_offset = info64->lo_offset;
1187  info->lo_encrypt_type = info64->lo_encrypt_type;
1188  info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1189  info->lo_flags = info64->lo_flags;
1190  info->lo_init[0] = info64->lo_init[0];
1191  info->lo_init[1] = info64->lo_init[1];
1192  if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1193  memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1194  else
1195  memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1197 
1198  /* error in case values were truncated */
1199  if (info->lo_device != info64->lo_device ||
1200  info->lo_rdevice != info64->lo_rdevice ||
1201  info->lo_inode != info64->lo_inode ||
1202  info->lo_offset != info64->lo_offset)
1203  return -EOVERFLOW;
1204 
1205  return 0;
1206 }
1207 
1208 static int
1209 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1210 {
1211  struct loop_info info;
1212  struct loop_info64 info64;
1213 
1214  if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1215  return -EFAULT;
1216  loop_info64_from_old(&info, &info64);
1217  return loop_set_status(lo, &info64);
1218 }
1219 
1220 static int
1221 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1222 {
1223  struct loop_info64 info64;
1224 
1225  if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1226  return -EFAULT;
1227  return loop_set_status(lo, &info64);
1228 }
1229 
1230 static int
1231 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1232  struct loop_info info;
1233  struct loop_info64 info64;
1234  int err = 0;
1235 
1236  if (!arg)
1237  err = -EINVAL;
1238  if (!err)
1239  err = loop_get_status(lo, &info64);
1240  if (!err)
1241  err = loop_info64_to_old(&info64, &info);
1242  if (!err && copy_to_user(arg, &info, sizeof(info)))
1243  err = -EFAULT;
1244 
1245  return err;
1246 }
1247 
1248 static int
1249 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1250  struct loop_info64 info64;
1251  int err = 0;
1252 
1253  if (!arg)
1254  err = -EINVAL;
1255  if (!err)
1256  err = loop_get_status(lo, &info64);
1257  if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1258  err = -EFAULT;
1259 
1260  return err;
1261 }
1262 
1263 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1264 {
1265  int err;
1266  sector_t sec;
1267  loff_t sz;
1268 
1269  err = -ENXIO;
1270  if (unlikely(lo->lo_state != Lo_bound))
1271  goto out;
1272  err = figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1273  if (unlikely(err))
1274  goto out;
1275  sec = get_capacity(lo->lo_disk);
1276  /* the width of sector_t may be narrow for bit-shift */
1277  sz = sec;
1278  sz <<= 9;
1279  mutex_lock(&bdev->bd_mutex);
1280  bd_set_size(bdev, sz);
1281  /* let user-space know about the new size */
1282  kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1283  mutex_unlock(&bdev->bd_mutex);
1284 
1285  out:
1286  return err;
1287 }
1288 
1289 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1290  unsigned int cmd, unsigned long arg)
1291 {
1292  struct loop_device *lo = bdev->bd_disk->private_data;
1293  int err;
1294 
1296  switch (cmd) {
1297  case LOOP_SET_FD:
1298  err = loop_set_fd(lo, mode, bdev, arg);
1299  break;
1300  case LOOP_CHANGE_FD:
1301  err = loop_change_fd(lo, bdev, arg);
1302  break;
1303  case LOOP_CLR_FD:
1304  /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1305  err = loop_clr_fd(lo);
1306  if (!err)
1307  goto out_unlocked;
1308  break;
1309  case LOOP_SET_STATUS:
1310  err = -EPERM;
1311  if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1312  err = loop_set_status_old(lo,
1313  (struct loop_info __user *)arg);
1314  break;
1315  case LOOP_GET_STATUS:
1316  err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1317  break;
1318  case LOOP_SET_STATUS64:
1319  err = -EPERM;
1320  if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1321  err = loop_set_status64(lo,
1322  (struct loop_info64 __user *) arg);
1323  break;
1324  case LOOP_GET_STATUS64:
1325  err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1326  break;
1327  case LOOP_SET_CAPACITY:
1328  err = -EPERM;
1329  if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1330  err = loop_set_capacity(lo, bdev);
1331  break;
1332  default:
1333  err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1334  }
1335  mutex_unlock(&lo->lo_ctl_mutex);
1336 
1337 out_unlocked:
1338  return err;
1339 }
1340 
1341 #ifdef CONFIG_COMPAT
1342 struct compat_loop_info {
1343  compat_int_t lo_number; /* ioctl r/o */
1344  compat_dev_t lo_device; /* ioctl r/o */
1345  compat_ulong_t lo_inode; /* ioctl r/o */
1346  compat_dev_t lo_rdevice; /* ioctl r/o */
1347  compat_int_t lo_offset;
1348  compat_int_t lo_encrypt_type;
1349  compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1350  compat_int_t lo_flags; /* ioctl r/o */
1351  char lo_name[LO_NAME_SIZE];
1352  unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1353  compat_ulong_t lo_init[2];
1354  char reserved[4];
1355 };
1356 
1357 /*
1358  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1359  * - noinlined to reduce stack space usage in main part of driver
1360  */
1361 static noinline int
1362 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1363  struct loop_info64 *info64)
1364 {
1365  struct compat_loop_info info;
1366 
1367  if (copy_from_user(&info, arg, sizeof(info)))
1368  return -EFAULT;
1369 
1370  memset(info64, 0, sizeof(*info64));
1371  info64->lo_number = info.lo_number;
1372  info64->lo_device = info.lo_device;
1373  info64->lo_inode = info.lo_inode;
1374  info64->lo_rdevice = info.lo_rdevice;
1375  info64->lo_offset = info.lo_offset;
1376  info64->lo_sizelimit = 0;
1377  info64->lo_encrypt_type = info.lo_encrypt_type;
1379  info64->lo_flags = info.lo_flags;
1380  info64->lo_init[0] = info.lo_init[0];
1381  info64->lo_init[1] = info.lo_init[1];
1382  if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1383  memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1384  else
1385  memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1387  return 0;
1388 }
1389 
1390 /*
1391  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1392  * - noinlined to reduce stack space usage in main part of driver
1393  */
1394 static noinline int
1395 loop_info64_to_compat(const struct loop_info64 *info64,
1396  struct compat_loop_info __user *arg)
1397 {
1398  struct compat_loop_info info;
1399 
1400  memset(&info, 0, sizeof(info));
1401  info.lo_number = info64->lo_number;
1402  info.lo_device = info64->lo_device;
1403  info.lo_inode = info64->lo_inode;
1404  info.lo_rdevice = info64->lo_rdevice;
1405  info.lo_offset = info64->lo_offset;
1406  info.lo_encrypt_type = info64->lo_encrypt_type;
1408  info.lo_flags = info64->lo_flags;
1409  info.lo_init[0] = info64->lo_init[0];
1410  info.lo_init[1] = info64->lo_init[1];
1411  if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1412  memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1413  else
1414  memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1416 
1417  /* error in case values were truncated */
1418  if (info.lo_device != info64->lo_device ||
1419  info.lo_rdevice != info64->lo_rdevice ||
1420  info.lo_inode != info64->lo_inode ||
1421  info.lo_offset != info64->lo_offset ||
1422  info.lo_init[0] != info64->lo_init[0] ||
1423  info.lo_init[1] != info64->lo_init[1])
1424  return -EOVERFLOW;
1425 
1426  if (copy_to_user(arg, &info, sizeof(info)))
1427  return -EFAULT;
1428  return 0;
1429 }
1430 
1431 static int
1432 loop_set_status_compat(struct loop_device *lo,
1433  const struct compat_loop_info __user *arg)
1434 {
1435  struct loop_info64 info64;
1436  int ret;
1437 
1438  ret = loop_info64_from_compat(arg, &info64);
1439  if (ret < 0)
1440  return ret;
1441  return loop_set_status(lo, &info64);
1442 }
1443 
1444 static int
1445 loop_get_status_compat(struct loop_device *lo,
1446  struct compat_loop_info __user *arg)
1447 {
1448  struct loop_info64 info64;
1449  int err = 0;
1450 
1451  if (!arg)
1452  err = -EINVAL;
1453  if (!err)
1454  err = loop_get_status(lo, &info64);
1455  if (!err)
1456  err = loop_info64_to_compat(&info64, arg);
1457  return err;
1458 }
1459 
1460 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1461  unsigned int cmd, unsigned long arg)
1462 {
1463  struct loop_device *lo = bdev->bd_disk->private_data;
1464  int err;
1465 
1466  switch(cmd) {
1467  case LOOP_SET_STATUS:
1468  mutex_lock(&lo->lo_ctl_mutex);
1469  err = loop_set_status_compat(
1470  lo, (const struct compat_loop_info __user *) arg);
1471  mutex_unlock(&lo->lo_ctl_mutex);
1472  break;
1473  case LOOP_GET_STATUS:
1474  mutex_lock(&lo->lo_ctl_mutex);
1475  err = loop_get_status_compat(
1476  lo, (struct compat_loop_info __user *) arg);
1477  mutex_unlock(&lo->lo_ctl_mutex);
1478  break;
1479  case LOOP_SET_CAPACITY:
1480  case LOOP_CLR_FD:
1481  case LOOP_GET_STATUS64:
1482  case LOOP_SET_STATUS64:
1483  arg = (unsigned long) compat_ptr(arg);
1484  case LOOP_SET_FD:
1485  case LOOP_CHANGE_FD:
1486  err = lo_ioctl(bdev, mode, cmd, arg);
1487  break;
1488  default:
1489  err = -ENOIOCTLCMD;
1490  break;
1491  }
1492  return err;
1493 }
1494 #endif
1495 
1496 static int lo_open(struct block_device *bdev, fmode_t mode)
1497 {
1498  struct loop_device *lo;
1499  int err = 0;
1500 
1501  mutex_lock(&loop_index_mutex);
1502  lo = bdev->bd_disk->private_data;
1503  if (!lo) {
1504  err = -ENXIO;
1505  goto out;
1506  }
1507 
1508  mutex_lock(&lo->lo_ctl_mutex);
1509  lo->lo_refcnt++;
1510  mutex_unlock(&lo->lo_ctl_mutex);
1511 out:
1512  mutex_unlock(&loop_index_mutex);
1513  return err;
1514 }
1515 
1516 static int lo_release(struct gendisk *disk, fmode_t mode)
1517 {
1518  struct loop_device *lo = disk->private_data;
1519  int err;
1520 
1521  mutex_lock(&lo->lo_ctl_mutex);
1522 
1523  if (--lo->lo_refcnt)
1524  goto out;
1525 
1526  if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1527  /*
1528  * In autoclear mode, stop the loop thread
1529  * and remove configuration after last close.
1530  */
1531  err = loop_clr_fd(lo);
1532  if (!err)
1533  goto out_unlocked;
1534  } else {
1535  /*
1536  * Otherwise keep thread (if running) and config,
1537  * but flush possible ongoing bios in thread.
1538  */
1539  loop_flush(lo);
1540  }
1541 
1542 out:
1543  mutex_unlock(&lo->lo_ctl_mutex);
1544 out_unlocked:
1545  return 0;
1546 }
1547 
1548 static const struct block_device_operations lo_fops = {
1549  .owner = THIS_MODULE,
1550  .open = lo_open,
1551  .release = lo_release,
1552  .ioctl = lo_ioctl,
1553 #ifdef CONFIG_COMPAT
1554  .compat_ioctl = lo_compat_ioctl,
1555 #endif
1556 };
1557 
1558 /*
1559  * And now the modules code and kernel interface.
1560  */
1561 static int max_loop;
1562 module_param(max_loop, int, S_IRUGO);
1563 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1564 module_param(max_part, int, S_IRUGO);
1565 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1566 MODULE_LICENSE("GPL");
1568 
1570 {
1571  unsigned int n = funcs->number;
1572 
1573  if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1574  return -EINVAL;
1575  xfer_funcs[n] = funcs;
1576  return 0;
1577 }
1578 
1579 static int unregister_transfer_cb(int id, void *ptr, void *data)
1580 {
1581  struct loop_device *lo = ptr;
1582  struct loop_func_table *xfer = data;
1583 
1584  mutex_lock(&lo->lo_ctl_mutex);
1585  if (lo->lo_encryption == xfer)
1586  loop_release_xfer(lo);
1587  mutex_unlock(&lo->lo_ctl_mutex);
1588  return 0;
1589 }
1590 
1592 {
1593  unsigned int n = number;
1594  struct loop_func_table *xfer;
1595 
1596  if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1597  return -EINVAL;
1598 
1599  xfer_funcs[n] = NULL;
1600  idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1601  return 0;
1602 }
1603 
1606 
1607 static int loop_add(struct loop_device **l, int i)
1608 {
1609  struct loop_device *lo;
1610  struct gendisk *disk;
1611  int err;
1612 
1613  err = -ENOMEM;
1614  lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1615  if (!lo)
1616  goto out;
1617 
1618  if (!idr_pre_get(&loop_index_idr, GFP_KERNEL))
1619  goto out_free_dev;
1620 
1621  if (i >= 0) {
1622  int m;
1623 
1624  /* create specific i in the index */
1625  err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1626  if (err >= 0 && i != m) {
1627  idr_remove(&loop_index_idr, m);
1628  err = -EEXIST;
1629  }
1630  } else if (i == -1) {
1631  int m;
1632 
1633  /* get next free nr */
1634  err = idr_get_new(&loop_index_idr, lo, &m);
1635  if (err >= 0)
1636  i = m;
1637  } else {
1638  err = -EINVAL;
1639  }
1640  if (err < 0)
1641  goto out_free_dev;
1642 
1644  if (!lo->lo_queue)
1645  goto out_free_dev;
1646 
1647  disk = lo->lo_disk = alloc_disk(1 << part_shift);
1648  if (!disk)
1649  goto out_free_queue;
1650 
1651  /*
1652  * Disable partition scanning by default. The in-kernel partition
1653  * scanning can be requested individually per-device during its
1654  * setup. Userspace can always add and remove partitions from all
1655  * devices. The needed partition minors are allocated from the
1656  * extended minor space, the main loop device numbers will continue
1657  * to match the loop minors, regardless of the number of partitions
1658  * used.
1659  *
1660  * If max_part is given, partition scanning is globally enabled for
1661  * all loop devices. The minors for the main loop devices will be
1662  * multiples of max_part.
1663  *
1664  * Note: Global-for-all-devices, set-only-at-init, read-only module
1665  * parameteters like 'max_loop' and 'max_part' make things needlessly
1666  * complicated, are too static, inflexible and may surprise
1667  * userspace tools. Parameters like this in general should be avoided.
1668  */
1669  if (!part_shift)
1670  disk->flags |= GENHD_FL_NO_PART_SCAN;
1671  disk->flags |= GENHD_FL_EXT_DEVT;
1672  mutex_init(&lo->lo_ctl_mutex);
1673  lo->lo_number = i;
1674  lo->lo_thread = NULL;
1676  spin_lock_init(&lo->lo_lock);
1677  disk->major = LOOP_MAJOR;
1678  disk->first_minor = i << part_shift;
1679  disk->fops = &lo_fops;
1680  disk->private_data = lo;
1681  disk->queue = lo->lo_queue;
1682  sprintf(disk->disk_name, "loop%d", i);
1683  add_disk(disk);
1684  *l = lo;
1685  return lo->lo_number;
1686 
1687 out_free_queue:
1689 out_free_dev:
1690  kfree(lo);
1691 out:
1692  return err;
1693 }
1694 
1695 static void loop_remove(struct loop_device *lo)
1696 {
1697  del_gendisk(lo->lo_disk);
1699  put_disk(lo->lo_disk);
1700  kfree(lo);
1701 }
1702 
1703 static int find_free_cb(int id, void *ptr, void *data)
1704 {
1705  struct loop_device *lo = ptr;
1706  struct loop_device **l = data;
1707 
1708  if (lo->lo_state == Lo_unbound) {
1709  *l = lo;
1710  return 1;
1711  }
1712  return 0;
1713 }
1714 
1715 static int loop_lookup(struct loop_device **l, int i)
1716 {
1717  struct loop_device *lo;
1718  int ret = -ENODEV;
1719 
1720  if (i < 0) {
1721  int err;
1722 
1723  err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1724  if (err == 1) {
1725  *l = lo;
1726  ret = lo->lo_number;
1727  }
1728  goto out;
1729  }
1730 
1731  /* lookup and return a specific i */
1732  lo = idr_find(&loop_index_idr, i);
1733  if (lo) {
1734  *l = lo;
1735  ret = lo->lo_number;
1736  }
1737 out:
1738  return ret;
1739 }
1740 
1741 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1742 {
1743  struct loop_device *lo;
1744  struct kobject *kobj;
1745  int err;
1746 
1747  mutex_lock(&loop_index_mutex);
1748  err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1749  if (err < 0)
1750  err = loop_add(&lo, MINOR(dev) >> part_shift);
1751  if (err < 0)
1752  kobj = ERR_PTR(err);
1753  else
1754  kobj = get_disk(lo->lo_disk);
1755  mutex_unlock(&loop_index_mutex);
1756 
1757  *part = 0;
1758  return kobj;
1759 }
1760 
1761 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1762  unsigned long parm)
1763 {
1764  struct loop_device *lo;
1765  int ret = -ENOSYS;
1766 
1767  mutex_lock(&loop_index_mutex);
1768  switch (cmd) {
1769  case LOOP_CTL_ADD:
1770  ret = loop_lookup(&lo, parm);
1771  if (ret >= 0) {
1772  ret = -EEXIST;
1773  break;
1774  }
1775  ret = loop_add(&lo, parm);
1776  break;
1777  case LOOP_CTL_REMOVE:
1778  ret = loop_lookup(&lo, parm);
1779  if (ret < 0)
1780  break;
1781  mutex_lock(&lo->lo_ctl_mutex);
1782  if (lo->lo_state != Lo_unbound) {
1783  ret = -EBUSY;
1784  mutex_unlock(&lo->lo_ctl_mutex);
1785  break;
1786  }
1787  if (lo->lo_refcnt > 0) {
1788  ret = -EBUSY;
1789  mutex_unlock(&lo->lo_ctl_mutex);
1790  break;
1791  }
1792  lo->lo_disk->private_data = NULL;
1793  mutex_unlock(&lo->lo_ctl_mutex);
1794  idr_remove(&loop_index_idr, lo->lo_number);
1795  loop_remove(lo);
1796  break;
1797  case LOOP_CTL_GET_FREE:
1798  ret = loop_lookup(&lo, -1);
1799  if (ret >= 0)
1800  break;
1801  ret = loop_add(&lo, -1);
1802  }
1803  mutex_unlock(&loop_index_mutex);
1804 
1805  return ret;
1806 }
1807 
1808 static const struct file_operations loop_ctl_fops = {
1809  .open = nonseekable_open,
1810  .unlocked_ioctl = loop_control_ioctl,
1811  .compat_ioctl = loop_control_ioctl,
1812  .owner = THIS_MODULE,
1813  .llseek = noop_llseek,
1814 };
1815 
1816 static struct miscdevice loop_misc = {
1817  .minor = LOOP_CTRL_MINOR,
1818  .name = "loop-control",
1819  .fops = &loop_ctl_fops,
1820 };
1821 
1823 MODULE_ALIAS("devname:loop-control");
1824 
1825 static int __init loop_init(void)
1826 {
1827  int i, nr;
1828  unsigned long range;
1829  struct loop_device *lo;
1830  int err;
1831 
1832  err = misc_register(&loop_misc);
1833  if (err < 0)
1834  return err;
1835 
1836  part_shift = 0;
1837  if (max_part > 0) {
1838  part_shift = fls(max_part);
1839 
1840  /*
1841  * Adjust max_part according to part_shift as it is exported
1842  * to user space so that user can decide correct minor number
1843  * if [s]he want to create more devices.
1844  *
1845  * Note that -1 is required because partition 0 is reserved
1846  * for the whole disk.
1847  */
1848  max_part = (1UL << part_shift) - 1;
1849  }
1850 
1851  if ((1UL << part_shift) > DISK_MAX_PARTS)
1852  return -EINVAL;
1853 
1854  if (max_loop > 1UL << (MINORBITS - part_shift))
1855  return -EINVAL;
1856 
1857  /*
1858  * If max_loop is specified, create that many devices upfront.
1859  * This also becomes a hard limit. If max_loop is not specified,
1860  * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1861  * init time. Loop devices can be requested on-demand with the
1862  * /dev/loop-control interface, or be instantiated by accessing
1863  * a 'dead' device node.
1864  */
1865  if (max_loop) {
1866  nr = max_loop;
1867  range = max_loop << part_shift;
1868  } else {
1869  nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1870  range = 1UL << MINORBITS;
1871  }
1872 
1873  if (register_blkdev(LOOP_MAJOR, "loop"))
1874  return -EIO;
1875 
1877  THIS_MODULE, loop_probe, NULL, NULL);
1878 
1879  /* pre-create number of devices given by config or max_loop */
1880  mutex_lock(&loop_index_mutex);
1881  for (i = 0; i < nr; i++)
1882  loop_add(&lo, i);
1883  mutex_unlock(&loop_index_mutex);
1884 
1885  printk(KERN_INFO "loop: module loaded\n");
1886  return 0;
1887 }
1888 
1889 static int loop_exit_cb(int id, void *ptr, void *data)
1890 {
1891  struct loop_device *lo = ptr;
1892 
1893  loop_remove(lo);
1894  return 0;
1895 }
1896 
1897 static void __exit loop_exit(void)
1898 {
1899  unsigned long range;
1900 
1901  range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1902 
1903  idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1904  idr_remove_all(&loop_index_idr);
1905  idr_destroy(&loop_index_idr);
1906 
1908  unregister_blkdev(LOOP_MAJOR, "loop");
1909 
1910  misc_deregister(&loop_misc);
1911 }
1912 
1913 module_init(loop_init);
1914 module_exit(loop_exit);
1915 
1916 #ifndef MODULE
1917 static int __init max_loop_setup(char *str)
1918 {
1919  max_loop = simple_strtol(str, NULL, 0);
1920  return 1;
1921 }
1922 
1923 __setup("max_loop=", max_loop_setup);
1924 #endif