Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
addr.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2005 Voltaire Inc. All rights reserved.
3  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4  * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5  * Copyright (c) 2005 Intel Corporation. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses. You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or
14  * without modification, are permitted provided that the following
15  * conditions are met:
16  *
17  * - Redistributions of source code must retain the above
18  * copyright notice, this list of conditions and the following
19  * disclaimer.
20  *
21  * - Redistributions in binary form must reproduce the above
22  * copyright notice, this list of conditions and the following
23  * disclaimer in the documentation and/or other materials
24  * provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 
49 MODULE_AUTHOR("Sean Hefty");
50 MODULE_DESCRIPTION("IB Address Translation");
51 MODULE_LICENSE("Dual BSD/GPL");
52 
53 struct addr_req {
54  struct list_head list;
59  void *context;
61  struct rdma_dev_addr *addr, void *context);
62  unsigned long timeout;
63  int status;
64 };
65 
66 static void process_req(struct work_struct *work);
67 
68 static DEFINE_MUTEX(lock);
69 static LIST_HEAD(req_list);
70 static DECLARE_DELAYED_WORK(work, process_req);
71 static struct workqueue_struct *addr_wq;
72 
74 {
75  atomic_set(&client->refcount, 1);
76  init_completion(&client->comp);
77 }
79 
80 static inline void put_client(struct rdma_addr_client *client)
81 {
82  if (atomic_dec_and_test(&client->refcount))
83  complete(&client->comp);
84 }
85 
87 {
88  put_client(client);
89  wait_for_completion(&client->comp);
90 }
92 
93 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
94  const unsigned char *dst_dev_addr)
95 {
96  dev_addr->dev_type = dev->type;
97  memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
98  memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
99  if (dst_dev_addr)
100  memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
101  dev_addr->bound_dev_if = dev->ifindex;
102  return 0;
103 }
105 
106 int rdma_translate_ip(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
107 {
108  struct net_device *dev;
109  int ret = -EADDRNOTAVAIL;
110 
111  if (dev_addr->bound_dev_if) {
112  dev = dev_get_by_index(&init_net, dev_addr->bound_dev_if);
113  if (!dev)
114  return -ENODEV;
115  ret = rdma_copy_addr(dev_addr, dev, NULL);
116  dev_put(dev);
117  return ret;
118  }
119 
120  switch (addr->sa_family) {
121  case AF_INET:
122  dev = ip_dev_find(&init_net,
123  ((struct sockaddr_in *) addr)->sin_addr.s_addr);
124 
125  if (!dev)
126  return ret;
127 
128  ret = rdma_copy_addr(dev_addr, dev, NULL);
129  dev_put(dev);
130  break;
131 
132 #if IS_ENABLED(CONFIG_IPV6)
133  case AF_INET6:
134  rcu_read_lock();
136  if (ipv6_chk_addr(&init_net,
137  &((struct sockaddr_in6 *) addr)->sin6_addr,
138  dev, 1)) {
139  ret = rdma_copy_addr(dev_addr, dev, NULL);
140  break;
141  }
142  }
143  rcu_read_unlock();
144  break;
145 #endif
146  }
147  return ret;
148 }
150 
151 static void set_timeout(unsigned long time)
152 {
153  unsigned long delay;
154 
155  delay = time - jiffies;
156  if ((long)delay <= 0)
157  delay = 1;
158 
159  mod_delayed_work(addr_wq, &work, delay);
160 }
161 
162 static void queue_req(struct addr_req *req)
163 {
164  struct addr_req *temp_req;
165 
166  mutex_lock(&lock);
167  list_for_each_entry_reverse(temp_req, &req_list, list) {
168  if (time_after_eq(req->timeout, temp_req->timeout))
169  break;
170  }
171 
172  list_add(&req->list, &temp_req->list);
173 
174  if (req_list.next == &req->list)
175  set_timeout(req->timeout);
176  mutex_unlock(&lock);
177 }
178 
179 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, void *daddr)
180 {
181  struct neighbour *n;
182  int ret;
183 
184  n = dst_neigh_lookup(dst, daddr);
185 
186  rcu_read_lock();
187  if (!n || !(n->nud_state & NUD_VALID)) {
188  if (n)
189  neigh_event_send(n, NULL);
190  ret = -ENODATA;
191  } else {
192  ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
193  }
194  rcu_read_unlock();
195 
196  if (n)
197  neigh_release(n);
198 
199  return ret;
200 }
201 
202 static int addr4_resolve(struct sockaddr_in *src_in,
203  struct sockaddr_in *dst_in,
204  struct rdma_dev_addr *addr)
205 {
206  __be32 src_ip = src_in->sin_addr.s_addr;
207  __be32 dst_ip = dst_in->sin_addr.s_addr;
208  struct rtable *rt;
209  struct flowi4 fl4;
210  int ret;
211 
212  memset(&fl4, 0, sizeof(fl4));
213  fl4.daddr = dst_ip;
214  fl4.saddr = src_ip;
215  fl4.flowi4_oif = addr->bound_dev_if;
216  rt = ip_route_output_key(&init_net, &fl4);
217  if (IS_ERR(rt)) {
218  ret = PTR_ERR(rt);
219  goto out;
220  }
221  src_in->sin_family = AF_INET;
222  src_in->sin_addr.s_addr = fl4.saddr;
223 
224  if (rt->dst.dev->flags & IFF_LOOPBACK) {
225  ret = rdma_translate_ip((struct sockaddr *) dst_in, addr);
226  if (!ret)
228  goto put;
229  }
230 
231  /* If the device does ARP internally, return 'done' */
232  if (rt->dst.dev->flags & IFF_NOARP) {
233  ret = rdma_copy_addr(addr, rt->dst.dev, NULL);
234  goto put;
235  }
236 
237  ret = dst_fetch_ha(&rt->dst, addr, &fl4.daddr);
238 put:
239  ip_rt_put(rt);
240 out:
241  return ret;
242 }
243 
244 #if IS_ENABLED(CONFIG_IPV6)
245 static int addr6_resolve(struct sockaddr_in6 *src_in,
246  struct sockaddr_in6 *dst_in,
247  struct rdma_dev_addr *addr)
248 {
249  struct flowi6 fl6;
250  struct dst_entry *dst;
251  int ret;
252 
253  memset(&fl6, 0, sizeof fl6);
254  fl6.daddr = dst_in->sin6_addr;
255  fl6.saddr = src_in->sin6_addr;
256  fl6.flowi6_oif = addr->bound_dev_if;
257 
258  dst = ip6_route_output(&init_net, NULL, &fl6);
259  if ((ret = dst->error))
260  goto put;
261 
262  if (ipv6_addr_any(&fl6.saddr)) {
263  ret = ipv6_dev_get_saddr(&init_net, ip6_dst_idev(dst)->dev,
264  &fl6.daddr, 0, &fl6.saddr);
265  if (ret)
266  goto put;
267 
268  src_in->sin6_family = AF_INET6;
269  src_in->sin6_addr = fl6.saddr;
270  }
271 
272  if (dst->dev->flags & IFF_LOOPBACK) {
273  ret = rdma_translate_ip((struct sockaddr *) dst_in, addr);
274  if (!ret)
276  goto put;
277  }
278 
279  /* If the device does ARP internally, return 'done' */
280  if (dst->dev->flags & IFF_NOARP) {
281  ret = rdma_copy_addr(addr, dst->dev, NULL);
282  goto put;
283  }
284 
285  ret = dst_fetch_ha(dst, addr, &fl6.daddr);
286 put:
287  dst_release(dst);
288  return ret;
289 }
290 #else
291 static int addr6_resolve(struct sockaddr_in6 *src_in,
292  struct sockaddr_in6 *dst_in,
293  struct rdma_dev_addr *addr)
294 {
295  return -EADDRNOTAVAIL;
296 }
297 #endif
298 
299 static int addr_resolve(struct sockaddr *src_in,
300  struct sockaddr *dst_in,
301  struct rdma_dev_addr *addr)
302 {
303  if (src_in->sa_family == AF_INET) {
304  return addr4_resolve((struct sockaddr_in *) src_in,
305  (struct sockaddr_in *) dst_in, addr);
306  } else
307  return addr6_resolve((struct sockaddr_in6 *) src_in,
308  (struct sockaddr_in6 *) dst_in, addr);
309 }
310 
311 static void process_req(struct work_struct *work)
312 {
313  struct addr_req *req, *temp_req;
314  struct sockaddr *src_in, *dst_in;
315  struct list_head done_list;
316 
317  INIT_LIST_HEAD(&done_list);
318 
319  mutex_lock(&lock);
320  list_for_each_entry_safe(req, temp_req, &req_list, list) {
321  if (req->status == -ENODATA) {
322  src_in = (struct sockaddr *) &req->src_addr;
323  dst_in = (struct sockaddr *) &req->dst_addr;
324  req->status = addr_resolve(src_in, dst_in, req->addr);
325  if (req->status && time_after_eq(jiffies, req->timeout))
326  req->status = -ETIMEDOUT;
327  else if (req->status == -ENODATA)
328  continue;
329  }
330  list_move_tail(&req->list, &done_list);
331  }
332 
333  if (!list_empty(&req_list)) {
334  req = list_entry(req_list.next, struct addr_req, list);
335  set_timeout(req->timeout);
336  }
337  mutex_unlock(&lock);
338 
339  list_for_each_entry_safe(req, temp_req, &done_list, list) {
340  list_del(&req->list);
341  req->callback(req->status, (struct sockaddr *) &req->src_addr,
342  req->addr, req->context);
343  put_client(req->client);
344  kfree(req);
345  }
346 }
347 
349  struct sockaddr *src_addr, struct sockaddr *dst_addr,
350  struct rdma_dev_addr *addr, int timeout_ms,
351  void (*callback)(int status, struct sockaddr *src_addr,
352  struct rdma_dev_addr *addr, void *context),
353  void *context)
354 {
355  struct sockaddr *src_in, *dst_in;
356  struct addr_req *req;
357  int ret = 0;
358 
359  req = kzalloc(sizeof *req, GFP_KERNEL);
360  if (!req)
361  return -ENOMEM;
362 
363  src_in = (struct sockaddr *) &req->src_addr;
364  dst_in = (struct sockaddr *) &req->dst_addr;
365 
366  if (src_addr) {
367  if (src_addr->sa_family != dst_addr->sa_family) {
368  ret = -EINVAL;
369  goto err;
370  }
371 
372  memcpy(src_in, src_addr, ip_addr_size(src_addr));
373  } else {
374  src_in->sa_family = dst_addr->sa_family;
375  }
376 
377  memcpy(dst_in, dst_addr, ip_addr_size(dst_addr));
378  req->addr = addr;
379  req->callback = callback;
380  req->context = context;
381  req->client = client;
382  atomic_inc(&client->refcount);
383 
384  req->status = addr_resolve(src_in, dst_in, addr);
385  switch (req->status) {
386  case 0:
387  req->timeout = jiffies;
388  queue_req(req);
389  break;
390  case -ENODATA:
391  req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
392  queue_req(req);
393  break;
394  default:
395  ret = req->status;
396  atomic_dec(&client->refcount);
397  goto err;
398  }
399  return ret;
400 err:
401  kfree(req);
402  return ret;
403 }
405 
406 void rdma_addr_cancel(struct rdma_dev_addr *addr)
407 {
408  struct addr_req *req, *temp_req;
409 
410  mutex_lock(&lock);
411  list_for_each_entry_safe(req, temp_req, &req_list, list) {
412  if (req->addr == addr) {
413  req->status = -ECANCELED;
414  req->timeout = jiffies;
415  list_move(&req->list, &req_list);
416  set_timeout(req->timeout);
417  break;
418  }
419  }
420  mutex_unlock(&lock);
421 }
423 
424 static int netevent_callback(struct notifier_block *self, unsigned long event,
425  void *ctx)
426 {
427  if (event == NETEVENT_NEIGH_UPDATE) {
428  struct neighbour *neigh = ctx;
429 
430  if (neigh->nud_state & NUD_VALID) {
431  set_timeout(jiffies);
432  }
433  }
434  return 0;
435 }
436 
437 static struct notifier_block nb = {
438  .notifier_call = netevent_callback
439 };
440 
441 static int __init addr_init(void)
442 {
443  addr_wq = create_singlethread_workqueue("ib_addr");
444  if (!addr_wq)
445  return -ENOMEM;
446 
448  return 0;
449 }
450 
451 static void __exit addr_cleanup(void)
452 {
454  destroy_workqueue(addr_wq);
455 }
456 
457 module_init(addr_init);
458 module_exit(addr_cleanup);