Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
block.c
Go to the documentation of this file.
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author: Andrew Christian
18  * 28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 
38 #include <linux/mmc/ioctl.h>
39 #include <linux/mmc/card.h>
40 #include <linux/mmc/host.h>
41 #include <linux/mmc/mmc.h>
42 #include <linux/mmc/sd.h>
43 
44 #include <asm/uaccess.h>
45 
46 #include "queue.h"
47 
48 MODULE_ALIAS("mmc:block");
49 #ifdef MODULE_PARAM_PREFIX
50 #undef MODULE_PARAM_PREFIX
51 #endif
52 #define MODULE_PARAM_PREFIX "mmcblk."
53 
54 #define INAND_CMD38_ARG_EXT_CSD 113
55 #define INAND_CMD38_ARG_ERASE 0x00
56 #define INAND_CMD38_ARG_TRIM 0x01
57 #define INAND_CMD38_ARG_SECERASE 0x80
58 #define INAND_CMD38_ARG_SECTRIM1 0x81
59 #define INAND_CMD38_ARG_SECTRIM2 0x88
60 
61 static DEFINE_MUTEX(block_mutex);
62 
63 /*
64  * The defaults come from config options but can be overriden by module
65  * or bootarg options.
66  */
67 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
68 
69 /*
70  * We've only got one major, so number of mmcblk devices is
71  * limited to 256 / number of minors per device.
72  */
73 static int max_devices;
74 
75 /* 256 minors, so at most 256 separate devices */
76 static DECLARE_BITMAP(dev_use, 256);
77 static DECLARE_BITMAP(name_use, 256);
78 
79 /*
80  * There is one mmc_blk_data per slot.
81  */
82 struct mmc_blk_data {
84  struct gendisk *disk;
85  struct mmc_queue queue;
86  struct list_head part;
87 
88  unsigned int flags;
89 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
90 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
91 
92  unsigned int usage;
93  unsigned int read_only;
94  unsigned int part_type;
95  unsigned int name_idx;
96  unsigned int reset_done;
97 #define MMC_BLK_READ BIT(0)
98 #define MMC_BLK_WRITE BIT(1)
99 #define MMC_BLK_DISCARD BIT(2)
100 #define MMC_BLK_SECDISCARD BIT(3)
101 
102  /*
103  * Only set in main mmc_blk_data associated
104  * with mmc_card with mmc_set_drvdata, and keeps
105  * track of the current selected device partition.
106  */
107  unsigned int part_curr;
111 };
112 
113 static DEFINE_MUTEX(open_lock);
114 
124 };
125 
126 module_param(perdev_minors, int, 0444);
127 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
128 
129 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
130 {
131  struct mmc_blk_data *md;
132 
133  mutex_lock(&open_lock);
134  md = disk->private_data;
135  if (md && md->usage == 0)
136  md = NULL;
137  if (md)
138  md->usage++;
139  mutex_unlock(&open_lock);
140 
141  return md;
142 }
143 
144 static inline int mmc_get_devidx(struct gendisk *disk)
145 {
146  int devmaj = MAJOR(disk_devt(disk));
147  int devidx = MINOR(disk_devt(disk)) / perdev_minors;
148 
149  if (!devmaj)
150  devidx = disk->first_minor / perdev_minors;
151  return devidx;
152 }
153 
154 static void mmc_blk_put(struct mmc_blk_data *md)
155 {
156  mutex_lock(&open_lock);
157  md->usage--;
158  if (md->usage == 0) {
159  int devidx = mmc_get_devidx(md->disk);
160  blk_cleanup_queue(md->queue.queue);
161 
162  __clear_bit(devidx, dev_use);
163 
164  put_disk(md->disk);
165  kfree(md);
166  }
167  mutex_unlock(&open_lock);
168 }
169 
170 static ssize_t power_ro_lock_show(struct device *dev,
171  struct device_attribute *attr, char *buf)
172 {
173  int ret;
174  struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
175  struct mmc_card *card = md->queue.card;
176  int locked = 0;
177 
178  if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
179  locked = 2;
180  else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
181  locked = 1;
182 
183  ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
184 
185  return ret;
186 }
187 
188 static ssize_t power_ro_lock_store(struct device *dev,
189  struct device_attribute *attr, const char *buf, size_t count)
190 {
191  int ret;
192  struct mmc_blk_data *md, *part_md;
193  struct mmc_card *card;
194  unsigned long set;
195 
196  if (kstrtoul(buf, 0, &set))
197  return -EINVAL;
198 
199  if (set != 1)
200  return count;
201 
202  md = mmc_blk_get(dev_to_disk(dev));
203  card = md->queue.card;
204 
205  mmc_claim_host(card->host);
206 
208  card->ext_csd.boot_ro_lock |
210  card->ext_csd.part_time);
211  if (ret)
212  pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
213  else
214  card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
215 
216  mmc_release_host(card->host);
217 
218  if (!ret) {
219  pr_info("%s: Locking boot partition ro until next power on\n",
220  md->disk->disk_name);
221  set_disk_ro(md->disk, 1);
222 
223  list_for_each_entry(part_md, &md->part, part)
224  if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
225  pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
226  set_disk_ro(part_md->disk, 1);
227  }
228  }
229 
230  mmc_blk_put(md);
231  return count;
232 }
233 
234 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
235  char *buf)
236 {
237  int ret;
238  struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
239 
240  ret = snprintf(buf, PAGE_SIZE, "%d",
241  get_disk_ro(dev_to_disk(dev)) ^
242  md->read_only);
243  mmc_blk_put(md);
244  return ret;
245 }
246 
247 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
248  const char *buf, size_t count)
249 {
250  int ret;
251  char *end;
252  struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
253  unsigned long set = simple_strtoul(buf, &end, 0);
254  if (end == buf) {
255  ret = -EINVAL;
256  goto out;
257  }
258 
259  set_disk_ro(dev_to_disk(dev), set || md->read_only);
260  ret = count;
261 out:
262  mmc_blk_put(md);
263  return ret;
264 }
265 
266 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
267 {
268  struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
269  int ret = -ENXIO;
270 
271  mutex_lock(&block_mutex);
272  if (md) {
273  if (md->usage == 2)
274  check_disk_change(bdev);
275  ret = 0;
276 
277  if ((mode & FMODE_WRITE) && md->read_only) {
278  mmc_blk_put(md);
279  ret = -EROFS;
280  }
281  }
282  mutex_unlock(&block_mutex);
283 
284  return ret;
285 }
286 
287 static int mmc_blk_release(struct gendisk *disk, fmode_t mode)
288 {
289  struct mmc_blk_data *md = disk->private_data;
290 
291  mutex_lock(&block_mutex);
292  mmc_blk_put(md);
293  mutex_unlock(&block_mutex);
294  return 0;
295 }
296 
297 static int
298 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
299 {
300  geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
301  geo->heads = 4;
302  geo->sectors = 16;
303  return 0;
304 }
305 
307  struct mmc_ioc_cmd ic;
308  unsigned char *buf;
310 };
311 
312 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
313  struct mmc_ioc_cmd __user *user)
314 {
315  struct mmc_blk_ioc_data *idata;
316  int err;
317 
318  idata = kzalloc(sizeof(*idata), GFP_KERNEL);
319  if (!idata) {
320  err = -ENOMEM;
321  goto out;
322  }
323 
324  if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
325  err = -EFAULT;
326  goto idata_err;
327  }
328 
329  idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
330  if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
331  err = -EOVERFLOW;
332  goto idata_err;
333  }
334 
335  if (!idata->buf_bytes)
336  return idata;
337 
338  idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
339  if (!idata->buf) {
340  err = -ENOMEM;
341  goto idata_err;
342  }
343 
344  if (copy_from_user(idata->buf, (void __user *)(unsigned long)
345  idata->ic.data_ptr, idata->buf_bytes)) {
346  err = -EFAULT;
347  goto copy_err;
348  }
349 
350  return idata;
351 
352 copy_err:
353  kfree(idata->buf);
354 idata_err:
355  kfree(idata);
356 out:
357  return ERR_PTR(err);
358 }
359 
360 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
361  struct mmc_ioc_cmd __user *ic_ptr)
362 {
363  struct mmc_blk_ioc_data *idata;
364  struct mmc_blk_data *md;
365  struct mmc_card *card;
366  struct mmc_command cmd = {0};
367  struct mmc_data data = {0};
368  struct mmc_request mrq = {NULL};
369  struct scatterlist sg;
370  int err;
371 
372  /*
373  * The caller must have CAP_SYS_RAWIO, and must be calling this on the
374  * whole block device, not on a partition. This prevents overspray
375  * between sibling partitions.
376  */
377  if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
378  return -EPERM;
379 
380  idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
381  if (IS_ERR(idata))
382  return PTR_ERR(idata);
383 
384  md = mmc_blk_get(bdev->bd_disk);
385  if (!md) {
386  err = -EINVAL;
387  goto cmd_err;
388  }
389 
390  card = md->queue.card;
391  if (IS_ERR(card)) {
392  err = PTR_ERR(card);
393  goto cmd_done;
394  }
395 
396  cmd.opcode = idata->ic.opcode;
397  cmd.arg = idata->ic.arg;
398  cmd.flags = idata->ic.flags;
399 
400  if (idata->buf_bytes) {
401  data.sg = &sg;
402  data.sg_len = 1;
403  data.blksz = idata->ic.blksz;
404  data.blocks = idata->ic.blocks;
405 
406  sg_init_one(data.sg, idata->buf, idata->buf_bytes);
407 
408  if (idata->ic.write_flag)
409  data.flags = MMC_DATA_WRITE;
410  else
411  data.flags = MMC_DATA_READ;
412 
413  /* data.flags must already be set before doing this. */
414  mmc_set_data_timeout(&data, card);
415 
416  /* Allow overriding the timeout_ns for empirical tuning. */
417  if (idata->ic.data_timeout_ns)
418  data.timeout_ns = idata->ic.data_timeout_ns;
419 
420  if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
421  /*
422  * Pretend this is a data transfer and rely on the
423  * host driver to compute timeout. When all host
424  * drivers support cmd.cmd_timeout for R1B, this
425  * can be changed to:
426  *
427  * mrq.data = NULL;
428  * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
429  */
430  data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
431  }
432 
433  mrq.data = &data;
434  }
435 
436  mrq.cmd = &cmd;
437 
438  mmc_claim_host(card->host);
439 
440  if (idata->ic.is_acmd) {
441  err = mmc_app_cmd(card->host, card);
442  if (err)
443  goto cmd_rel_host;
444  }
445 
446  mmc_wait_for_req(card->host, &mrq);
447 
448  if (cmd.error) {
449  dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
450  __func__, cmd.error);
451  err = cmd.error;
452  goto cmd_rel_host;
453  }
454  if (data.error) {
455  dev_err(mmc_dev(card->host), "%s: data error %d\n",
456  __func__, data.error);
457  err = data.error;
458  goto cmd_rel_host;
459  }
460 
461  /*
462  * According to the SD specs, some commands require a delay after
463  * issuing the command.
464  */
465  if (idata->ic.postsleep_min_us)
466  usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
467 
468  if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
469  err = -EFAULT;
470  goto cmd_rel_host;
471  }
472 
473  if (!idata->ic.write_flag) {
474  if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
475  idata->buf, idata->buf_bytes)) {
476  err = -EFAULT;
477  goto cmd_rel_host;
478  }
479  }
480 
481 cmd_rel_host:
482  mmc_release_host(card->host);
483 
484 cmd_done:
485  mmc_blk_put(md);
486 cmd_err:
487  kfree(idata->buf);
488  kfree(idata);
489  return err;
490 }
491 
492 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
493  unsigned int cmd, unsigned long arg)
494 {
495  int ret = -EINVAL;
496  if (cmd == MMC_IOC_CMD)
497  ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
498  return ret;
499 }
500 
501 #ifdef CONFIG_COMPAT
502 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
503  unsigned int cmd, unsigned long arg)
504 {
505  return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
506 }
507 #endif
508 
509 static const struct block_device_operations mmc_bdops = {
510  .open = mmc_blk_open,
511  .release = mmc_blk_release,
512  .getgeo = mmc_blk_getgeo,
513  .owner = THIS_MODULE,
514  .ioctl = mmc_blk_ioctl,
515 #ifdef CONFIG_COMPAT
516  .compat_ioctl = mmc_blk_compat_ioctl,
517 #endif
518 };
519 
520 static inline int mmc_blk_part_switch(struct mmc_card *card,
521  struct mmc_blk_data *md)
522 {
523  int ret;
524  struct mmc_blk_data *main_md = mmc_get_drvdata(card);
525 
526  if (main_md->part_curr == md->part_type)
527  return 0;
528 
529  if (mmc_card_mmc(card)) {
530  u8 part_config = card->ext_csd.part_config;
531 
532  part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
533  part_config |= md->part_type;
534 
536  EXT_CSD_PART_CONFIG, part_config,
537  card->ext_csd.part_time);
538  if (ret)
539  return ret;
540 
541  card->ext_csd.part_config = part_config;
542  }
543 
544  main_md->part_curr = md->part_type;
545  return 0;
546 }
547 
548 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
549 {
550  int err;
551  u32 result;
552  __be32 *blocks;
553 
554  struct mmc_request mrq = {NULL};
555  struct mmc_command cmd = {0};
556  struct mmc_data data = {0};
557 
558  struct scatterlist sg;
559 
560  cmd.opcode = MMC_APP_CMD;
561  cmd.arg = card->rca << 16;
563 
564  err = mmc_wait_for_cmd(card->host, &cmd, 0);
565  if (err)
566  return (u32)-1;
567  if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
568  return (u32)-1;
569 
570  memset(&cmd, 0, sizeof(struct mmc_command));
571 
573  cmd.arg = 0;
575 
576  data.blksz = 4;
577  data.blocks = 1;
578  data.flags = MMC_DATA_READ;
579  data.sg = &sg;
580  data.sg_len = 1;
581  mmc_set_data_timeout(&data, card);
582 
583  mrq.cmd = &cmd;
584  mrq.data = &data;
585 
586  blocks = kmalloc(4, GFP_KERNEL);
587  if (!blocks)
588  return (u32)-1;
589 
590  sg_init_one(&sg, blocks, 4);
591 
592  mmc_wait_for_req(card->host, &mrq);
593 
594  result = ntohl(*blocks);
595  kfree(blocks);
596 
597  if (cmd.error || data.error)
598  result = (u32)-1;
599 
600  return result;
601 }
602 
603 static int send_stop(struct mmc_card *card, u32 *status)
604 {
605  struct mmc_command cmd = {0};
606  int err;
607 
610  err = mmc_wait_for_cmd(card->host, &cmd, 5);
611  if (err == 0)
612  *status = cmd.resp[0];
613  return err;
614 }
615 
616 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
617 {
618  struct mmc_command cmd = {0};
619  int err;
620 
621  cmd.opcode = MMC_SEND_STATUS;
622  if (!mmc_host_is_spi(card->host))
623  cmd.arg = card->rca << 16;
625  err = mmc_wait_for_cmd(card->host, &cmd, retries);
626  if (err == 0)
627  *status = cmd.resp[0];
628  return err;
629 }
630 
631 #define ERR_NOMEDIUM 3
632 #define ERR_RETRY 2
633 #define ERR_ABORT 1
634 #define ERR_CONTINUE 0
635 
636 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
637  bool status_valid, u32 status)
638 {
639  switch (error) {
640  case -EILSEQ:
641  /* response crc error, retry the r/w cmd */
642  pr_err("%s: %s sending %s command, card status %#x\n",
643  req->rq_disk->disk_name, "response CRC error",
644  name, status);
645  return ERR_RETRY;
646 
647  case -ETIMEDOUT:
648  pr_err("%s: %s sending %s command, card status %#x\n",
649  req->rq_disk->disk_name, "timed out", name, status);
650 
651  /* If the status cmd initially failed, retry the r/w cmd */
652  if (!status_valid)
653  return ERR_RETRY;
654 
655  /*
656  * If it was a r/w cmd crc error, or illegal command
657  * (eg, issued in wrong state) then retry - we should
658  * have corrected the state problem above.
659  */
660  if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
661  return ERR_RETRY;
662 
663  /* Otherwise abort the command */
664  return ERR_ABORT;
665 
666  default:
667  /* We don't understand the error code the driver gave us */
668  pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
669  req->rq_disk->disk_name, error, status);
670  return ERR_ABORT;
671  }
672 }
673 
674 /*
675  * Initial r/w and stop cmd error recovery.
676  * We don't know whether the card received the r/w cmd or not, so try to
677  * restore things back to a sane state. Essentially, we do this as follows:
678  * - Obtain card status. If the first attempt to obtain card status fails,
679  * the status word will reflect the failed status cmd, not the failed
680  * r/w cmd. If we fail to obtain card status, it suggests we can no
681  * longer communicate with the card.
682  * - Check the card state. If the card received the cmd but there was a
683  * transient problem with the response, it might still be in a data transfer
684  * mode. Try to send it a stop command. If this fails, we can't recover.
685  * - If the r/w cmd failed due to a response CRC error, it was probably
686  * transient, so retry the cmd.
687  * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
688  * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
689  * illegal cmd, retry.
690  * Otherwise we don't understand what happened, so abort.
691  */
692 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
693  struct mmc_blk_request *brq, int *ecc_err)
694 {
695  bool prev_cmd_status_valid = true;
696  u32 status, stop_status = 0;
697  int err, retry;
698 
699  if (mmc_card_removed(card))
700  return ERR_NOMEDIUM;
701 
702  /*
703  * Try to get card status which indicates both the card state
704  * and why there was no response. If the first attempt fails,
705  * we can't be sure the returned status is for the r/w command.
706  */
707  for (retry = 2; retry >= 0; retry--) {
708  err = get_card_status(card, &status, 0);
709  if (!err)
710  break;
711 
712  prev_cmd_status_valid = false;
713  pr_err("%s: error %d sending status command, %sing\n",
714  req->rq_disk->disk_name, err, retry ? "retry" : "abort");
715  }
716 
717  /* We couldn't get a response from the card. Give up. */
718  if (err) {
719  /* Check if the card is removed */
720  if (mmc_detect_card_removed(card->host))
721  return ERR_NOMEDIUM;
722  return ERR_ABORT;
723  }
724 
725  /* Flag ECC errors */
726  if ((status & R1_CARD_ECC_FAILED) ||
727  (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
728  (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
729  *ecc_err = 1;
730 
731  /*
732  * Check the current card state. If it is in some data transfer
733  * mode, tell it to stop (and hopefully transition back to TRAN.)
734  */
735  if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
736  R1_CURRENT_STATE(status) == R1_STATE_RCV) {
737  err = send_stop(card, &stop_status);
738  if (err)
739  pr_err("%s: error %d sending stop command\n",
740  req->rq_disk->disk_name, err);
741 
742  /*
743  * If the stop cmd also timed out, the card is probably
744  * not present, so abort. Other errors are bad news too.
745  */
746  if (err)
747  return ERR_ABORT;
748  if (stop_status & R1_CARD_ECC_FAILED)
749  *ecc_err = 1;
750  }
751 
752  /* Check for set block count errors */
753  if (brq->sbc.error)
754  return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
755  prev_cmd_status_valid, status);
756 
757  /* Check for r/w command errors */
758  if (brq->cmd.error)
759  return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
760  prev_cmd_status_valid, status);
761 
762  /* Data errors */
763  if (!brq->stop.error)
764  return ERR_CONTINUE;
765 
766  /* Now for stop errors. These aren't fatal to the transfer. */
767  pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
768  req->rq_disk->disk_name, brq->stop.error,
769  brq->cmd.resp[0], status);
770 
771  /*
772  * Subsitute in our own stop status as this will give the error
773  * state which happened during the execution of the r/w command.
774  */
775  if (stop_status) {
776  brq->stop.resp[0] = stop_status;
777  brq->stop.error = 0;
778  }
779  return ERR_CONTINUE;
780 }
781 
782 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
783  int type)
784 {
785  int err;
786 
787  if (md->reset_done & type)
788  return -EEXIST;
789 
790  md->reset_done |= type;
791  err = mmc_hw_reset(host);
792  /* Ensure we switch back to the correct partition */
793  if (err != -EOPNOTSUPP) {
794  struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
795  int part_err;
796 
797  main_md->part_curr = main_md->part_type;
798  part_err = mmc_blk_part_switch(host->card, md);
799  if (part_err) {
800  /*
801  * We have failed to get back into the correct
802  * partition, so we need to abort the whole request.
803  */
804  return -ENODEV;
805  }
806  }
807  return err;
808 }
809 
810 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
811 {
812  md->reset_done &= ~type;
813 }
814 
815 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
816 {
817  struct mmc_blk_data *md = mq->data;
818  struct mmc_card *card = md->queue.card;
819  unsigned int from, nr, arg;
820  int err = 0, type = MMC_BLK_DISCARD;
821 
822  if (!mmc_can_erase(card)) {
823  err = -EOPNOTSUPP;
824  goto out;
825  }
826 
827  from = blk_rq_pos(req);
828  nr = blk_rq_sectors(req);
829 
830  if (mmc_can_discard(card))
831  arg = MMC_DISCARD_ARG;
832  else if (mmc_can_trim(card))
833  arg = MMC_TRIM_ARG;
834  else
835  arg = MMC_ERASE_ARG;
836 retry:
837  if (card->quirks & MMC_QUIRK_INAND_CMD38) {
840  arg == MMC_TRIM_ARG ?
843  0);
844  if (err)
845  goto out;
846  }
847  err = mmc_erase(card, from, nr, arg);
848 out:
849  if (err == -EIO && !mmc_blk_reset(md, card->host, type))
850  goto retry;
851  if (!err)
852  mmc_blk_reset_success(md, type);
853  blk_end_request(req, err, blk_rq_bytes(req));
854 
855  return err ? 0 : 1;
856 }
857 
858 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
859  struct request *req)
860 {
861  struct mmc_blk_data *md = mq->data;
862  struct mmc_card *card = md->queue.card;
863  unsigned int from, nr, arg, trim_arg, erase_arg;
864  int err = 0, type = MMC_BLK_SECDISCARD;
865 
866  if (!(mmc_can_secure_erase_trim(card) || mmc_can_sanitize(card))) {
867  err = -EOPNOTSUPP;
868  goto out;
869  }
870 
871  from = blk_rq_pos(req);
872  nr = blk_rq_sectors(req);
873 
874  /* The sanitize operation is supported at v4.5 only */
875  if (mmc_can_sanitize(card)) {
876  erase_arg = MMC_ERASE_ARG;
877  trim_arg = MMC_TRIM_ARG;
878  } else {
879  erase_arg = MMC_SECURE_ERASE_ARG;
880  trim_arg = MMC_SECURE_TRIM1_ARG;
881  }
882 
883  if (mmc_erase_group_aligned(card, from, nr))
884  arg = erase_arg;
885  else if (mmc_can_trim(card))
886  arg = trim_arg;
887  else {
888  err = -EINVAL;
889  goto out;
890  }
891 retry:
892  if (card->quirks & MMC_QUIRK_INAND_CMD38) {
895  arg == MMC_SECURE_TRIM1_ARG ?
898  0);
899  if (err)
900  goto out_retry;
901  }
902 
903  err = mmc_erase(card, from, nr, arg);
904  if (err == -EIO)
905  goto out_retry;
906  if (err)
907  goto out;
908 
909  if (arg == MMC_SECURE_TRIM1_ARG) {
910  if (card->quirks & MMC_QUIRK_INAND_CMD38) {
914  0);
915  if (err)
916  goto out_retry;
917  }
918 
919  err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
920  if (err == -EIO)
921  goto out_retry;
922  if (err)
923  goto out;
924  }
925 
926  if (mmc_can_sanitize(card))
928  EXT_CSD_SANITIZE_START, 1, 0);
929 out_retry:
930  if (err && !mmc_blk_reset(md, card->host, type))
931  goto retry;
932  if (!err)
933  mmc_blk_reset_success(md, type);
934 out:
935  blk_end_request(req, err, blk_rq_bytes(req));
936 
937  return err ? 0 : 1;
938 }
939 
940 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
941 {
942  struct mmc_blk_data *md = mq->data;
943  struct mmc_card *card = md->queue.card;
944  int ret = 0;
945 
946  ret = mmc_flush_cache(card);
947  if (ret)
948  ret = -EIO;
949 
950  blk_end_request_all(req, ret);
951 
952  return ret ? 0 : 1;
953 }
954 
955 /*
956  * Reformat current write as a reliable write, supporting
957  * both legacy and the enhanced reliable write MMC cards.
958  * In each transfer we'll handle only as much as a single
959  * reliable write can handle, thus finish the request in
960  * partial completions.
961  */
962 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
963  struct mmc_card *card,
964  struct request *req)
965 {
966  if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
967  /* Legacy mode imposes restrictions on transfers. */
968  if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
969  brq->data.blocks = 1;
970 
971  if (brq->data.blocks > card->ext_csd.rel_sectors)
972  brq->data.blocks = card->ext_csd.rel_sectors;
973  else if (brq->data.blocks < card->ext_csd.rel_sectors)
974  brq->data.blocks = 1;
975  }
976 }
977 
978 #define CMD_ERRORS \
979  (R1_OUT_OF_RANGE | /* Command argument out of range */ \
980  R1_ADDRESS_ERROR | /* Misaligned address */ \
981  R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
982  R1_WP_VIOLATION | /* Tried to write to protected block */ \
983  R1_CC_ERROR | /* Card controller error */ \
984  R1_ERROR) /* General/unknown error */
985 
986 static int mmc_blk_err_check(struct mmc_card *card,
987  struct mmc_async_req *areq)
988 {
989  struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
990  mmc_active);
991  struct mmc_blk_request *brq = &mq_mrq->brq;
992  struct request *req = mq_mrq->req;
993  int ecc_err = 0;
994 
995  /*
996  * sbc.error indicates a problem with the set block count
997  * command. No data will have been transferred.
998  *
999  * cmd.error indicates a problem with the r/w command. No
1000  * data will have been transferred.
1001  *
1002  * stop.error indicates a problem with the stop command. Data
1003  * may have been transferred, or may still be transferring.
1004  */
1005  if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1006  brq->data.error) {
1007  switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err)) {
1008  case ERR_RETRY:
1009  return MMC_BLK_RETRY;
1010  case ERR_ABORT:
1011  return MMC_BLK_ABORT;
1012  case ERR_NOMEDIUM:
1013  return MMC_BLK_NOMEDIUM;
1014  case ERR_CONTINUE:
1015  break;
1016  }
1017  }
1018 
1019  /*
1020  * Check for errors relating to the execution of the
1021  * initial command - such as address errors. No data
1022  * has been transferred.
1023  */
1024  if (brq->cmd.resp[0] & CMD_ERRORS) {
1025  pr_err("%s: r/w command failed, status = %#x\n",
1026  req->rq_disk->disk_name, brq->cmd.resp[0]);
1027  return MMC_BLK_ABORT;
1028  }
1029 
1030  /*
1031  * Everything else is either success, or a data error of some
1032  * kind. If it was a write, we may have transitioned to
1033  * program mode, which we have to wait for it to complete.
1034  */
1035  if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1036  u32 status;
1037  do {
1038  int err = get_card_status(card, &status, 5);
1039  if (err) {
1040  pr_err("%s: error %d requesting status\n",
1041  req->rq_disk->disk_name, err);
1042  return MMC_BLK_CMD_ERR;
1043  }
1044  /*
1045  * Some cards mishandle the status bits,
1046  * so make sure to check both the busy
1047  * indication and the card state.
1048  */
1049  } while (!(status & R1_READY_FOR_DATA) ||
1050  (R1_CURRENT_STATE(status) == R1_STATE_PRG));
1051  }
1052 
1053  if (brq->data.error) {
1054  pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1055  req->rq_disk->disk_name, brq->data.error,
1056  (unsigned)blk_rq_pos(req),
1057  (unsigned)blk_rq_sectors(req),
1058  brq->cmd.resp[0], brq->stop.resp[0]);
1059 
1060  if (rq_data_dir(req) == READ) {
1061  if (ecc_err)
1062  return MMC_BLK_ECC_ERR;
1063  return MMC_BLK_DATA_ERR;
1064  } else {
1065  return MMC_BLK_CMD_ERR;
1066  }
1067  }
1068 
1069  if (!brq->data.bytes_xfered)
1070  return MMC_BLK_RETRY;
1071 
1072  if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1073  return MMC_BLK_PARTIAL;
1074 
1075  return MMC_BLK_SUCCESS;
1076 }
1077 
1078 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1079  struct mmc_card *card,
1080  int disable_multi,
1081  struct mmc_queue *mq)
1082 {
1083  u32 readcmd, writecmd;
1084  struct mmc_blk_request *brq = &mqrq->brq;
1085  struct request *req = mqrq->req;
1086  struct mmc_blk_data *md = mq->data;
1087  bool do_data_tag;
1088 
1089  /*
1090  * Reliable writes are used to implement Forced Unit Access and
1091  * REQ_META accesses, and are supported only on MMCs.
1092  *
1093  * XXX: this really needs a good explanation of why REQ_META
1094  * is treated special.
1095  */
1096  bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1097  (req->cmd_flags & REQ_META)) &&
1098  (rq_data_dir(req) == WRITE) &&
1099  (md->flags & MMC_BLK_REL_WR);
1100 
1101  memset(brq, 0, sizeof(struct mmc_blk_request));
1102  brq->mrq.cmd = &brq->cmd;
1103  brq->mrq.data = &brq->data;
1104 
1105  brq->cmd.arg = blk_rq_pos(req);
1106  if (!mmc_card_blockaddr(card))
1107  brq->cmd.arg <<= 9;
1108  brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1109  brq->data.blksz = 512;
1110  brq->stop.opcode = MMC_STOP_TRANSMISSION;
1111  brq->stop.arg = 0;
1112  brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1113  brq->data.blocks = blk_rq_sectors(req);
1114 
1115  /*
1116  * The block layer doesn't support all sector count
1117  * restrictions, so we need to be prepared for too big
1118  * requests.
1119  */
1120  if (brq->data.blocks > card->host->max_blk_count)
1121  brq->data.blocks = card->host->max_blk_count;
1122 
1123  if (brq->data.blocks > 1) {
1124  /*
1125  * After a read error, we redo the request one sector
1126  * at a time in order to accurately determine which
1127  * sectors can be read successfully.
1128  */
1129  if (disable_multi)
1130  brq->data.blocks = 1;
1131 
1132  /* Some controllers can't do multiblock reads due to hw bugs */
1133  if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ &&
1134  rq_data_dir(req) == READ)
1135  brq->data.blocks = 1;
1136  }
1137 
1138  if (brq->data.blocks > 1 || do_rel_wr) {
1139  /* SPI multiblock writes terminate using a special
1140  * token, not a STOP_TRANSMISSION request.
1141  */
1142  if (!mmc_host_is_spi(card->host) ||
1143  rq_data_dir(req) == READ)
1144  brq->mrq.stop = &brq->stop;
1145  readcmd = MMC_READ_MULTIPLE_BLOCK;
1146  writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1147  } else {
1148  brq->mrq.stop = NULL;
1149  readcmd = MMC_READ_SINGLE_BLOCK;
1150  writecmd = MMC_WRITE_BLOCK;
1151  }
1152  if (rq_data_dir(req) == READ) {
1153  brq->cmd.opcode = readcmd;
1154  brq->data.flags |= MMC_DATA_READ;
1155  } else {
1156  brq->cmd.opcode = writecmd;
1157  brq->data.flags |= MMC_DATA_WRITE;
1158  }
1159 
1160  if (do_rel_wr)
1161  mmc_apply_rel_rw(brq, card, req);
1162 
1163  /*
1164  * Data tag is used only during writing meta data to speed
1165  * up write and any subsequent read of this meta data
1166  */
1167  do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1168  (req->cmd_flags & REQ_META) &&
1169  (rq_data_dir(req) == WRITE) &&
1170  ((brq->data.blocks * brq->data.blksz) >=
1171  card->ext_csd.data_tag_unit_size);
1172 
1173  /*
1174  * Pre-defined multi-block transfers are preferable to
1175  * open ended-ones (and necessary for reliable writes).
1176  * However, it is not sufficient to just send CMD23,
1177  * and avoid the final CMD12, as on an error condition
1178  * CMD12 (stop) needs to be sent anyway. This, coupled
1179  * with Auto-CMD23 enhancements provided by some
1180  * hosts, means that the complexity of dealing
1181  * with this is best left to the host. If CMD23 is
1182  * supported by card and host, we'll fill sbc in and let
1183  * the host deal with handling it correctly. This means
1184  * that for hosts that don't expose MMC_CAP_CMD23, no
1185  * change of behavior will be observed.
1186  *
1187  * N.B: Some MMC cards experience perf degradation.
1188  * We'll avoid using CMD23-bounded multiblock writes for
1189  * these, while retaining features like reliable writes.
1190  */
1191  if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1192  (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1193  do_data_tag)) {
1194  brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1195  brq->sbc.arg = brq->data.blocks |
1196  (do_rel_wr ? (1 << 31) : 0) |
1197  (do_data_tag ? (1 << 29) : 0);
1198  brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1199  brq->mrq.sbc = &brq->sbc;
1200  }
1201 
1202  mmc_set_data_timeout(&brq->data, card);
1203 
1204  brq->data.sg = mqrq->sg;
1205  brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1206 
1207  /*
1208  * Adjust the sg list so it is the same size as the
1209  * request.
1210  */
1211  if (brq->data.blocks != blk_rq_sectors(req)) {
1212  int i, data_size = brq->data.blocks << 9;
1213  struct scatterlist *sg;
1214 
1215  for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1216  data_size -= sg->length;
1217  if (data_size <= 0) {
1218  sg->length += data_size;
1219  i++;
1220  break;
1221  }
1222  }
1223  brq->data.sg_len = i;
1224  }
1225 
1226  mqrq->mmc_active.mrq = &brq->mrq;
1227  mqrq->mmc_active.err_check = mmc_blk_err_check;
1228 
1229  mmc_queue_bounce_pre(mqrq);
1230 }
1231 
1232 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1233  struct mmc_blk_request *brq, struct request *req,
1234  int ret)
1235 {
1236  /*
1237  * If this is an SD card and we're writing, we can first
1238  * mark the known good sectors as ok.
1239  *
1240  * If the card is not SD, we can still ok written sectors
1241  * as reported by the controller (which might be less than
1242  * the real number of written sectors, but never more).
1243  */
1244  if (mmc_card_sd(card)) {
1245  u32 blocks;
1246 
1247  blocks = mmc_sd_num_wr_blocks(card);
1248  if (blocks != (u32)-1) {
1249  ret = blk_end_request(req, 0, blocks << 9);
1250  }
1251  } else {
1252  ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1253  }
1254  return ret;
1255 }
1256 
1257 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1258 {
1259  struct mmc_blk_data *md = mq->data;
1260  struct mmc_card *card = md->queue.card;
1261  struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1262  int ret = 1, disable_multi = 0, retry = 0, type;
1263  enum mmc_blk_status status;
1264  struct mmc_queue_req *mq_rq;
1265  struct request *req = rqc;
1266  struct mmc_async_req *areq;
1267 
1268  if (!rqc && !mq->mqrq_prev->req)
1269  return 0;
1270 
1271  do {
1272  if (rqc) {
1273  /*
1274  * When 4KB native sector is enabled, only 8 blocks
1275  * multiple read or write is allowed
1276  */
1277  if ((brq->data.blocks & 0x07) &&
1278  (card->ext_csd.data_sector_size == 4096)) {
1279  pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1280  req->rq_disk->disk_name);
1281  goto cmd_abort;
1282  }
1283  mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1284  areq = &mq->mqrq_cur->mmc_active;
1285  } else
1286  areq = NULL;
1287  areq = mmc_start_req(card->host, areq, (int *) &status);
1288  if (!areq)
1289  return 0;
1290 
1291  mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1292  brq = &mq_rq->brq;
1293  req = mq_rq->req;
1294  type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1295  mmc_queue_bounce_post(mq_rq);
1296 
1297  switch (status) {
1298  case MMC_BLK_SUCCESS:
1299  case MMC_BLK_PARTIAL:
1300  /*
1301  * A block was successfully transferred.
1302  */
1303  mmc_blk_reset_success(md, type);
1304  ret = blk_end_request(req, 0,
1305  brq->data.bytes_xfered);
1306  /*
1307  * If the blk_end_request function returns non-zero even
1308  * though all data has been transferred and no errors
1309  * were returned by the host controller, it's a bug.
1310  */
1311  if (status == MMC_BLK_SUCCESS && ret) {
1312  pr_err("%s BUG rq_tot %d d_xfer %d\n",
1313  __func__, blk_rq_bytes(req),
1314  brq->data.bytes_xfered);
1315  rqc = NULL;
1316  goto cmd_abort;
1317  }
1318  break;
1319  case MMC_BLK_CMD_ERR:
1320  ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1321  if (!mmc_blk_reset(md, card->host, type))
1322  break;
1323  goto cmd_abort;
1324  case MMC_BLK_RETRY:
1325  if (retry++ < 5)
1326  break;
1327  /* Fall through */
1328  case MMC_BLK_ABORT:
1329  if (!mmc_blk_reset(md, card->host, type))
1330  break;
1331  goto cmd_abort;
1332  case MMC_BLK_DATA_ERR: {
1333  int err;
1334 
1335  err = mmc_blk_reset(md, card->host, type);
1336  if (!err)
1337  break;
1338  if (err == -ENODEV)
1339  goto cmd_abort;
1340  /* Fall through */
1341  }
1342  case MMC_BLK_ECC_ERR:
1343  if (brq->data.blocks > 1) {
1344  /* Redo read one sector at a time */
1345  pr_warning("%s: retrying using single block read\n",
1346  req->rq_disk->disk_name);
1347  disable_multi = 1;
1348  break;
1349  }
1350  /*
1351  * After an error, we redo I/O one sector at a
1352  * time, so we only reach here after trying to
1353  * read a single sector.
1354  */
1355  ret = blk_end_request(req, -EIO,
1356  brq->data.blksz);
1357  if (!ret)
1358  goto start_new_req;
1359  break;
1360  case MMC_BLK_NOMEDIUM:
1361  goto cmd_abort;
1362  }
1363 
1364  if (ret) {
1365  /*
1366  * In case of a incomplete request
1367  * prepare it again and resend.
1368  */
1369  mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq);
1370  mmc_start_req(card->host, &mq_rq->mmc_active, NULL);
1371  }
1372  } while (ret);
1373 
1374  return 1;
1375 
1376  cmd_abort:
1377  if (mmc_card_removed(card))
1378  req->cmd_flags |= REQ_QUIET;
1379  while (ret)
1380  ret = blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
1381 
1382  start_new_req:
1383  if (rqc) {
1384  mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1385  mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL);
1386  }
1387 
1388  return 0;
1389 }
1390 
1391 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1392 {
1393  int ret;
1394  struct mmc_blk_data *md = mq->data;
1395  struct mmc_card *card = md->queue.card;
1396 
1397  if (req && !mq->mqrq_prev->req)
1398  /* claim host only for the first request */
1399  mmc_claim_host(card->host);
1400 
1401  ret = mmc_blk_part_switch(card, md);
1402  if (ret) {
1403  if (req) {
1404  blk_end_request_all(req, -EIO);
1405  }
1406  ret = 0;
1407  goto out;
1408  }
1409 
1410  if (req && req->cmd_flags & REQ_DISCARD) {
1411  /* complete ongoing async transfer before issuing discard */
1412  if (card->host->areq)
1413  mmc_blk_issue_rw_rq(mq, NULL);
1414  if (req->cmd_flags & REQ_SECURE &&
1416  ret = mmc_blk_issue_secdiscard_rq(mq, req);
1417  else
1418  ret = mmc_blk_issue_discard_rq(mq, req);
1419  } else if (req && req->cmd_flags & REQ_FLUSH) {
1420  /* complete ongoing async transfer before issuing flush */
1421  if (card->host->areq)
1422  mmc_blk_issue_rw_rq(mq, NULL);
1423  ret = mmc_blk_issue_flush(mq, req);
1424  } else {
1425  ret = mmc_blk_issue_rw_rq(mq, req);
1426  }
1427 
1428 out:
1429  if (!req)
1430  /* release host only when there are no more requests */
1431  mmc_release_host(card->host);
1432  return ret;
1433 }
1434 
1435 static inline int mmc_blk_readonly(struct mmc_card *card)
1436 {
1437  return mmc_card_readonly(card) ||
1438  !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1439 }
1440 
1441 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1442  struct device *parent,
1443  sector_t size,
1444  bool default_ro,
1445  const char *subname,
1446  int area_type)
1447 {
1448  struct mmc_blk_data *md;
1449  int devidx, ret;
1450 
1451  devidx = find_first_zero_bit(dev_use, max_devices);
1452  if (devidx >= max_devices)
1453  return ERR_PTR(-ENOSPC);
1454  __set_bit(devidx, dev_use);
1455 
1456  md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1457  if (!md) {
1458  ret = -ENOMEM;
1459  goto out;
1460  }
1461 
1462  /*
1463  * !subname implies we are creating main mmc_blk_data that will be
1464  * associated with mmc_card with mmc_set_drvdata. Due to device
1465  * partitions, devidx will not coincide with a per-physical card
1466  * index anymore so we keep track of a name index.
1467  */
1468  if (!subname) {
1469  md->name_idx = find_first_zero_bit(name_use, max_devices);
1470  __set_bit(md->name_idx, name_use);
1471  } else
1472  md->name_idx = ((struct mmc_blk_data *)
1473  dev_to_disk(parent)->private_data)->name_idx;
1474 
1475  md->area_type = area_type;
1476 
1477  /*
1478  * Set the read-only status based on the supported commands
1479  * and the write protect switch.
1480  */
1481  md->read_only = mmc_blk_readonly(card);
1482 
1483  md->disk = alloc_disk(perdev_minors);
1484  if (md->disk == NULL) {
1485  ret = -ENOMEM;
1486  goto err_kfree;
1487  }
1488 
1489  spin_lock_init(&md->lock);
1490  INIT_LIST_HEAD(&md->part);
1491  md->usage = 1;
1492 
1493  ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1494  if (ret)
1495  goto err_putdisk;
1496 
1497  md->queue.issue_fn = mmc_blk_issue_rq;
1498  md->queue.data = md;
1499 
1500  md->disk->major = MMC_BLOCK_MAJOR;
1501  md->disk->first_minor = devidx * perdev_minors;
1502  md->disk->fops = &mmc_bdops;
1503  md->disk->private_data = md;
1504  md->disk->queue = md->queue.queue;
1505  md->disk->driverfs_dev = parent;
1506  set_disk_ro(md->disk, md->read_only || default_ro);
1507 
1508  /*
1509  * As discussed on lkml, GENHD_FL_REMOVABLE should:
1510  *
1511  * - be set for removable media with permanent block devices
1512  * - be unset for removable block devices with permanent media
1513  *
1514  * Since MMC block devices clearly fall under the second
1515  * case, we do not set GENHD_FL_REMOVABLE. Userspace
1516  * should use the block device creation/destruction hotplug
1517  * messages to tell when the card is present.
1518  */
1519 
1520  snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1521  "mmcblk%d%s", md->name_idx, subname ? subname : "");
1522 
1523  if (mmc_card_mmc(card))
1525  card->ext_csd.data_sector_size);
1526  else
1527  blk_queue_logical_block_size(md->queue.queue, 512);
1528 
1529  set_capacity(md->disk, size);
1530 
1531  if (mmc_host_cmd23(card->host)) {
1532  if (mmc_card_mmc(card) ||
1533  (mmc_card_sd(card) &&
1534  card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1535  md->flags |= MMC_BLK_CMD23;
1536  }
1537 
1538  if (mmc_card_mmc(card) &&
1539  md->flags & MMC_BLK_CMD23 &&
1540  ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1541  card->ext_csd.rel_sectors)) {
1542  md->flags |= MMC_BLK_REL_WR;
1543  blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
1544  }
1545 
1546  return md;
1547 
1548  err_putdisk:
1549  put_disk(md->disk);
1550  err_kfree:
1551  kfree(md);
1552  out:
1553  return ERR_PTR(ret);
1554 }
1555 
1556 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1557 {
1558  sector_t size;
1559  struct mmc_blk_data *md;
1560 
1561  if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1562  /*
1563  * The EXT_CSD sector count is in number or 512 byte
1564  * sectors.
1565  */
1566  size = card->ext_csd.sectors;
1567  } else {
1568  /*
1569  * The CSD capacity field is in units of read_blkbits.
1570  * set_capacity takes units of 512 bytes.
1571  */
1572  size = card->csd.capacity << (card->csd.read_blkbits - 9);
1573  }
1574 
1575  md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
1577  return md;
1578 }
1579 
1580 static int mmc_blk_alloc_part(struct mmc_card *card,
1581  struct mmc_blk_data *md,
1582  unsigned int part_type,
1583  sector_t size,
1584  bool default_ro,
1585  const char *subname,
1586  int area_type)
1587 {
1588  char cap_str[10];
1589  struct mmc_blk_data *part_md;
1590 
1591  part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1592  subname, area_type);
1593  if (IS_ERR(part_md))
1594  return PTR_ERR(part_md);
1595  part_md->part_type = part_type;
1596  list_add(&part_md->part, &md->part);
1597 
1598  string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
1599  cap_str, sizeof(cap_str));
1600  pr_info("%s: %s %s partition %u %s\n",
1601  part_md->disk->disk_name, mmc_card_id(card),
1602  mmc_card_name(card), part_md->part_type, cap_str);
1603  return 0;
1604 }
1605 
1606 /* MMC Physical partitions consist of two boot partitions and
1607  * up to four general purpose partitions.
1608  * For each partition enabled in EXT_CSD a block device will be allocatedi
1609  * to provide access to the partition.
1610  */
1611 
1612 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1613 {
1614  int idx, ret = 0;
1615 
1616  if (!mmc_card_mmc(card))
1617  return 0;
1618 
1619  for (idx = 0; idx < card->nr_parts; idx++) {
1620  if (card->part[idx].size) {
1621  ret = mmc_blk_alloc_part(card, md,
1622  card->part[idx].part_cfg,
1623  card->part[idx].size >> 9,
1624  card->part[idx].force_ro,
1625  card->part[idx].name,
1626  card->part[idx].area_type);
1627  if (ret)
1628  return ret;
1629  }
1630  }
1631 
1632  return ret;
1633 }
1634 
1635 static void mmc_blk_remove_req(struct mmc_blk_data *md)
1636 {
1637  struct mmc_card *card;
1638 
1639  if (md) {
1640  card = md->queue.card;
1641  if (md->disk->flags & GENHD_FL_UP) {
1642  device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1643  if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1644  card->ext_csd.boot_ro_lockable)
1645  device_remove_file(disk_to_dev(md->disk),
1646  &md->power_ro_lock);
1647 
1648  /* Stop new requests from getting into the queue */
1649  del_gendisk(md->disk);
1650  }
1651 
1652  /* Then flush out any already in there */
1653  mmc_cleanup_queue(&md->queue);
1654  mmc_blk_put(md);
1655  }
1656 }
1657 
1658 static void mmc_blk_remove_parts(struct mmc_card *card,
1659  struct mmc_blk_data *md)
1660 {
1661  struct list_head *pos, *q;
1662  struct mmc_blk_data *part_md;
1663 
1664  __clear_bit(md->name_idx, name_use);
1665  list_for_each_safe(pos, q, &md->part) {
1666  part_md = list_entry(pos, struct mmc_blk_data, part);
1667  list_del(pos);
1668  mmc_blk_remove_req(part_md);
1669  }
1670 }
1671 
1672 static int mmc_add_disk(struct mmc_blk_data *md)
1673 {
1674  int ret;
1675  struct mmc_card *card = md->queue.card;
1676 
1677  add_disk(md->disk);
1678  md->force_ro.show = force_ro_show;
1679  md->force_ro.store = force_ro_store;
1680  sysfs_attr_init(&md->force_ro.attr);
1681  md->force_ro.attr.name = "force_ro";
1682  md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
1683  ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
1684  if (ret)
1685  goto force_ro_fail;
1686 
1687  if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1688  card->ext_csd.boot_ro_lockable) {
1689  umode_t mode;
1690 
1691  if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
1692  mode = S_IRUGO;
1693  else
1694  mode = S_IRUGO | S_IWUSR;
1695 
1696  md->power_ro_lock.show = power_ro_lock_show;
1697  md->power_ro_lock.store = power_ro_lock_store;
1698  sysfs_attr_init(&md->power_ro_lock.attr);
1699  md->power_ro_lock.attr.mode = mode;
1700  md->power_ro_lock.attr.name =
1701  "ro_lock_until_next_power_on";
1702  ret = device_create_file(disk_to_dev(md->disk),
1703  &md->power_ro_lock);
1704  if (ret)
1705  goto power_ro_lock_fail;
1706  }
1707  return ret;
1708 
1709 power_ro_lock_fail:
1710  device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1711 force_ro_fail:
1712  del_gendisk(md->disk);
1713 
1714  return ret;
1715 }
1716 
1717 #define CID_MANFID_SANDISK 0x2
1718 #define CID_MANFID_TOSHIBA 0x11
1719 #define CID_MANFID_MICRON 0x13
1720 #define CID_MANFID_SAMSUNG 0x15
1721 
1722 static const struct mmc_fixup blk_fixups[] =
1723 {
1724  MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
1726  MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
1728  MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
1730  MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
1732  MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
1734 
1735  /*
1736  * Some MMC cards experience performance degradation with CMD23
1737  * instead of CMD12-bounded multiblock transfers. For now we'll
1738  * black list what's bad...
1739  * - Certain Toshiba cards.
1740  *
1741  * N.B. This doesn't affect SD cards.
1742  */
1743  MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1745  MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1747  MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1749 
1750  /*
1751  * Some Micron MMC cards needs longer data read timeout than
1752  * indicated in CSD.
1753  */
1754  MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
1756 
1757  /*
1758  * On these Samsung MoviNAND parts, performing secure erase or
1759  * secure trim can result in unrecoverable corruption due to a
1760  * firmware bug.
1761  */
1762  MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1764  MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1766  MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1768  MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1770  MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1772  MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1774  MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1776  MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1778 
1779  END_FIXUP
1780 };
1781 
1782 static int mmc_blk_probe(struct mmc_card *card)
1783 {
1784  struct mmc_blk_data *md, *part_md;
1785  char cap_str[10];
1786 
1787  /*
1788  * Check that the card supports the command class(es) we need.
1789  */
1790  if (!(card->csd.cmdclass & CCC_BLOCK_READ))
1791  return -ENODEV;
1792 
1793  md = mmc_blk_alloc(card);
1794  if (IS_ERR(md))
1795  return PTR_ERR(md);
1796 
1797  string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
1798  cap_str, sizeof(cap_str));
1799  pr_info("%s: %s %s %s %s\n",
1800  md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
1801  cap_str, md->read_only ? "(ro)" : "");
1802 
1803  if (mmc_blk_alloc_parts(card, md))
1804  goto out;
1805 
1806  mmc_set_drvdata(card, md);
1807  mmc_fixup_device(card, blk_fixups);
1808 
1809  if (mmc_add_disk(md))
1810  goto out;
1811 
1812  list_for_each_entry(part_md, &md->part, part) {
1813  if (mmc_add_disk(part_md))
1814  goto out;
1815  }
1816  return 0;
1817 
1818  out:
1819  mmc_blk_remove_parts(card, md);
1820  mmc_blk_remove_req(md);
1821  return 0;
1822 }
1823 
1824 static void mmc_blk_remove(struct mmc_card *card)
1825 {
1826  struct mmc_blk_data *md = mmc_get_drvdata(card);
1827 
1828  mmc_blk_remove_parts(card, md);
1829  mmc_claim_host(card->host);
1830  mmc_blk_part_switch(card, md);
1831  mmc_release_host(card->host);
1832  mmc_blk_remove_req(md);
1833  mmc_set_drvdata(card, NULL);
1834 }
1835 
1836 #ifdef CONFIG_PM
1837 static int mmc_blk_suspend(struct mmc_card *card)
1838 {
1839  struct mmc_blk_data *part_md;
1840  struct mmc_blk_data *md = mmc_get_drvdata(card);
1841 
1842  if (md) {
1843  mmc_queue_suspend(&md->queue);
1844  list_for_each_entry(part_md, &md->part, part) {
1845  mmc_queue_suspend(&part_md->queue);
1846  }
1847  }
1848  return 0;
1849 }
1850 
1851 static int mmc_blk_resume(struct mmc_card *card)
1852 {
1853  struct mmc_blk_data *part_md;
1854  struct mmc_blk_data *md = mmc_get_drvdata(card);
1855 
1856  if (md) {
1857  /*
1858  * Resume involves the card going into idle state,
1859  * so current partition is always the main one.
1860  */
1861  md->part_curr = md->part_type;
1862  mmc_queue_resume(&md->queue);
1863  list_for_each_entry(part_md, &md->part, part) {
1864  mmc_queue_resume(&part_md->queue);
1865  }
1866  }
1867  return 0;
1868 }
1869 #else
1870 #define mmc_blk_suspend NULL
1871 #define mmc_blk_resume NULL
1872 #endif
1873 
1874 static struct mmc_driver mmc_driver = {
1875  .drv = {
1876  .name = "mmcblk",
1877  },
1878  .probe = mmc_blk_probe,
1879  .remove = mmc_blk_remove,
1880  .suspend = mmc_blk_suspend,
1881  .resume = mmc_blk_resume,
1882 };
1883 
1884 static int __init mmc_blk_init(void)
1885 {
1886  int res;
1887 
1888  if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
1889  pr_info("mmcblk: using %d minors per device\n", perdev_minors);
1890 
1891  max_devices = 256 / perdev_minors;
1892 
1893  res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
1894  if (res)
1895  goto out;
1896 
1897  res = mmc_register_driver(&mmc_driver);
1898  if (res)
1899  goto out2;
1900 
1901  return 0;
1902  out2:
1904  out:
1905  return res;
1906 }
1907 
1908 static void __exit mmc_blk_exit(void)
1909 {
1910  mmc_unregister_driver(&mmc_driver);
1912 }
1913 
1914 module_init(mmc_blk_init);
1915 module_exit(mmc_blk_exit);
1916 
1917 MODULE_LICENSE("GPL");
1918 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
1919