Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
recv.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define SKB_CB_ATHBUF(__skb) (*((struct ath_buf **)__skb->cb))
22 
23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
24 {
25  return sc->ps_enabled &&
26  (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
27 }
28 
29 /*
30  * Setup and link descriptors.
31  *
32  * 11N: we can no longer afford to self link the last descriptor.
33  * MAC acknowledges BA status as long as it copies frames to host
34  * buffer (or rx fifo). This can incorrectly acknowledge packets
35  * to a sender if last desc is self-linked.
36  */
37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
38 {
39  struct ath_hw *ah = sc->sc_ah;
40  struct ath_common *common = ath9k_hw_common(ah);
41  struct ath_desc *ds;
42  struct sk_buff *skb;
43 
44  ATH_RXBUF_RESET(bf);
45 
46  ds = bf->bf_desc;
47  ds->ds_link = 0; /* link to null */
48  ds->ds_data = bf->bf_buf_addr;
49 
50  /* virtual addr of the beginning of the buffer. */
51  skb = bf->bf_mpdu;
52  BUG_ON(skb == NULL);
53  ds->ds_vdata = skb->data;
54 
55  /*
56  * setup rx descriptors. The rx_bufsize here tells the hardware
57  * how much data it can DMA to us and that we are prepared
58  * to process
59  */
60  ath9k_hw_setuprxdesc(ah, ds,
61  common->rx_bufsize,
62  0);
63 
64  if (sc->rx.rxlink == NULL)
65  ath9k_hw_putrxbuf(ah, bf->bf_daddr);
66  else
67  *sc->rx.rxlink = bf->bf_daddr;
68 
69  sc->rx.rxlink = &ds->ds_link;
70 }
71 
72 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
73 {
74  /* XXX block beacon interrupts */
75  ath9k_hw_setantenna(sc->sc_ah, antenna);
76  sc->rx.defant = antenna;
77  sc->rx.rxotherant = 0;
78 }
79 
80 static void ath_opmode_init(struct ath_softc *sc)
81 {
82  struct ath_hw *ah = sc->sc_ah;
83  struct ath_common *common = ath9k_hw_common(ah);
84 
85  u32 rfilt, mfilt[2];
86 
87  /* configure rx filter */
88  rfilt = ath_calcrxfilter(sc);
89  ath9k_hw_setrxfilter(ah, rfilt);
90 
91  /* configure bssid mask */
92  ath_hw_setbssidmask(common);
93 
94  /* configure operational mode */
96 
97  /* calculate and install multicast filter */
98  mfilt[0] = mfilt[1] = ~0;
99  ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
100 }
101 
102 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
103  enum ath9k_rx_qtype qtype)
104 {
105  struct ath_hw *ah = sc->sc_ah;
106  struct ath_rx_edma *rx_edma;
107  struct sk_buff *skb;
108  struct ath_buf *bf;
109 
110  rx_edma = &sc->rx.rx_edma[qtype];
111  if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
112  return false;
113 
114  bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
115  list_del_init(&bf->list);
116 
117  skb = bf->bf_mpdu;
118 
119  ATH_RXBUF_RESET(bf);
120  memset(skb->data, 0, ah->caps.rx_status_len);
122  ah->caps.rx_status_len, DMA_TO_DEVICE);
123 
124  SKB_CB_ATHBUF(skb) = bf;
125  ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
126  skb_queue_tail(&rx_edma->rx_fifo, skb);
127 
128  return true;
129 }
130 
131 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
132  enum ath9k_rx_qtype qtype, int size)
133 {
134  struct ath_common *common = ath9k_hw_common(sc->sc_ah);
135  struct ath_buf *bf, *tbf;
136 
137  if (list_empty(&sc->rx.rxbuf)) {
138  ath_dbg(common, QUEUE, "No free rx buf available\n");
139  return;
140  }
141 
142  list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
143  if (!ath_rx_edma_buf_link(sc, qtype))
144  break;
145 
146 }
147 
148 static void ath_rx_remove_buffer(struct ath_softc *sc,
149  enum ath9k_rx_qtype qtype)
150 {
151  struct ath_buf *bf;
152  struct ath_rx_edma *rx_edma;
153  struct sk_buff *skb;
154 
155  rx_edma = &sc->rx.rx_edma[qtype];
156 
157  while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
158  bf = SKB_CB_ATHBUF(skb);
159  BUG_ON(!bf);
160  list_add_tail(&bf->list, &sc->rx.rxbuf);
161  }
162 }
163 
164 static void ath_rx_edma_cleanup(struct ath_softc *sc)
165 {
166  struct ath_hw *ah = sc->sc_ah;
167  struct ath_common *common = ath9k_hw_common(ah);
168  struct ath_buf *bf;
169 
170  ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
171  ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
172 
173  list_for_each_entry(bf, &sc->rx.rxbuf, list) {
174  if (bf->bf_mpdu) {
176  common->rx_bufsize,
179  bf->bf_buf_addr = 0;
180  bf->bf_mpdu = NULL;
181  }
182  }
183 
184  INIT_LIST_HEAD(&sc->rx.rxbuf);
185 
186  kfree(sc->rx.rx_bufptr);
187  sc->rx.rx_bufptr = NULL;
188 }
189 
190 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
191 {
192  skb_queue_head_init(&rx_edma->rx_fifo);
193  rx_edma->rx_fifo_hwsize = size;
194 }
195 
196 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
197 {
198  struct ath_common *common = ath9k_hw_common(sc->sc_ah);
199  struct ath_hw *ah = sc->sc_ah;
200  struct sk_buff *skb;
201  struct ath_buf *bf;
202  int error = 0, i;
203  u32 size;
204 
205  ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
206  ah->caps.rx_status_len);
207 
208  ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
209  ah->caps.rx_lp_qdepth);
210  ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
211  ah->caps.rx_hp_qdepth);
212 
213  size = sizeof(struct ath_buf) * nbufs;
214  bf = kzalloc(size, GFP_KERNEL);
215  if (!bf)
216  return -ENOMEM;
217 
218  INIT_LIST_HEAD(&sc->rx.rxbuf);
219  sc->rx.rx_bufptr = bf;
220 
221  for (i = 0; i < nbufs; i++, bf++) {
222  skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
223  if (!skb) {
224  error = -ENOMEM;
225  goto rx_init_fail;
226  }
227 
228  memset(skb->data, 0, common->rx_bufsize);
229  bf->bf_mpdu = skb;
230 
231  bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
232  common->rx_bufsize,
235  bf->bf_buf_addr))) {
236  dev_kfree_skb_any(skb);
237  bf->bf_mpdu = NULL;
238  bf->bf_buf_addr = 0;
239  ath_err(common,
240  "dma_mapping_error() on RX init\n");
241  error = -ENOMEM;
242  goto rx_init_fail;
243  }
244 
245  list_add_tail(&bf->list, &sc->rx.rxbuf);
246  }
247 
248  return 0;
249 
250 rx_init_fail:
251  ath_rx_edma_cleanup(sc);
252  return error;
253 }
254 
255 static void ath_edma_start_recv(struct ath_softc *sc)
256 {
257  spin_lock_bh(&sc->rx.rxbuflock);
258 
259  ath9k_hw_rxena(sc->sc_ah);
260 
261  ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
262  sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize);
263 
264  ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP,
265  sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize);
266 
267  ath_opmode_init(sc);
268 
269  ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
270 
271  spin_unlock_bh(&sc->rx.rxbuflock);
272 }
273 
274 static void ath_edma_stop_recv(struct ath_softc *sc)
275 {
276  ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
277  ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
278 }
279 
280 int ath_rx_init(struct ath_softc *sc, int nbufs)
281 {
282  struct ath_common *common = ath9k_hw_common(sc->sc_ah);
283  struct sk_buff *skb;
284  struct ath_buf *bf;
285  int error = 0;
286 
288  spin_lock_init(&sc->rx.rxbuflock);
290 
291  common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
292  sc->sc_ah->caps.rx_status_len;
293 
294  if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
295  return ath_rx_edma_init(sc, nbufs);
296  } else {
297  ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
298  common->cachelsz, common->rx_bufsize);
299 
300  /* Initialize rx descriptors */
301 
302  error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
303  "rx", nbufs, 1, 0);
304  if (error != 0) {
305  ath_err(common,
306  "failed to allocate rx descriptors: %d\n",
307  error);
308  goto err;
309  }
310 
311  list_for_each_entry(bf, &sc->rx.rxbuf, list) {
312  skb = ath_rxbuf_alloc(common, common->rx_bufsize,
313  GFP_KERNEL);
314  if (skb == NULL) {
315  error = -ENOMEM;
316  goto err;
317  }
318 
319  bf->bf_mpdu = skb;
320  bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
321  common->rx_bufsize,
324  bf->bf_buf_addr))) {
325  dev_kfree_skb_any(skb);
326  bf->bf_mpdu = NULL;
327  bf->bf_buf_addr = 0;
328  ath_err(common,
329  "dma_mapping_error() on RX init\n");
330  error = -ENOMEM;
331  goto err;
332  }
333  }
334  sc->rx.rxlink = NULL;
335  }
336 
337 err:
338  if (error)
339  ath_rx_cleanup(sc);
340 
341  return error;
342 }
343 
344 void ath_rx_cleanup(struct ath_softc *sc)
345 {
346  struct ath_hw *ah = sc->sc_ah;
347  struct ath_common *common = ath9k_hw_common(ah);
348  struct sk_buff *skb;
349  struct ath_buf *bf;
350 
351  if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
352  ath_rx_edma_cleanup(sc);
353  return;
354  } else {
355  list_for_each_entry(bf, &sc->rx.rxbuf, list) {
356  skb = bf->bf_mpdu;
357  if (skb) {
359  common->rx_bufsize,
361  dev_kfree_skb(skb);
362  bf->bf_buf_addr = 0;
363  bf->bf_mpdu = NULL;
364  }
365  }
366 
367  if (sc->rx.rxdma.dd_desc_len != 0)
368  ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
369  }
370 }
371 
372 /*
373  * Calculate the receive filter according to the
374  * operating mode and state:
375  *
376  * o always accept unicast, broadcast, and multicast traffic
377  * o maintain current state of phy error reception (the hal
378  * may enable phy error frames for noise immunity work)
379  * o probe request frames are accepted only when operating in
380  * hostap, adhoc, or monitor modes
381  * o enable promiscuous mode according to the interface state
382  * o accept beacons:
383  * - when operating in adhoc mode so the 802.11 layer creates
384  * node table entries for peers,
385  * - when operating in station mode for collecting rssi data when
386  * the station is otherwise quiet, or
387  * - when operating as a repeater so we see repeater-sta beacons
388  * - when scanning
389  */
390 
392 {
393  u32 rfilt;
394 
397 
398  if (sc->rx.rxfilter & FIF_PROBE_REQ)
399  rfilt |= ATH9K_RX_FILTER_PROBEREQ;
400 
401  /*
402  * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
403  * mode interface or when in monitor mode. AP mode does not need this
404  * since it receives all in-BSS frames anyway.
405  */
406  if (sc->sc_ah->is_monitoring)
407  rfilt |= ATH9K_RX_FILTER_PROM;
408 
409  if (sc->rx.rxfilter & FIF_CONTROL)
410  rfilt |= ATH9K_RX_FILTER_CONTROL;
411 
412  if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
413  (sc->nvifs <= 1) &&
414  !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
415  rfilt |= ATH9K_RX_FILTER_MYBEACON;
416  else
417  rfilt |= ATH9K_RX_FILTER_BEACON;
418 
419  if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
420  (sc->rx.rxfilter & FIF_PSPOLL))
421  rfilt |= ATH9K_RX_FILTER_PSPOLL;
422 
423  if (conf_is_ht(&sc->hw->conf))
424  rfilt |= ATH9K_RX_FILTER_COMP_BAR;
425 
426  if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
427  /* This is needed for older chips */
428  if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
429  rfilt |= ATH9K_RX_FILTER_PROM;
431  }
432 
433  if (AR_SREV_9550(sc->sc_ah))
434  rfilt |= ATH9K_RX_FILTER_4ADDRESS;
435 
436  return rfilt;
437 
438 }
439 
440 int ath_startrecv(struct ath_softc *sc)
441 {
442  struct ath_hw *ah = sc->sc_ah;
443  struct ath_buf *bf, *tbf;
444 
445  if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
446  ath_edma_start_recv(sc);
447  return 0;
448  }
449 
450  spin_lock_bh(&sc->rx.rxbuflock);
451  if (list_empty(&sc->rx.rxbuf))
452  goto start_recv;
453 
454  sc->rx.rxlink = NULL;
455  list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
456  ath_rx_buf_link(sc, bf);
457  }
458 
459  /* We could have deleted elements so the list may be empty now */
460  if (list_empty(&sc->rx.rxbuf))
461  goto start_recv;
462 
463  bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
464  ath9k_hw_putrxbuf(ah, bf->bf_daddr);
465  ath9k_hw_rxena(ah);
466 
467 start_recv:
468  ath_opmode_init(sc);
469  ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
470 
471  spin_unlock_bh(&sc->rx.rxbuflock);
472 
473  return 0;
474 }
475 
476 bool ath_stoprecv(struct ath_softc *sc)
477 {
478  struct ath_hw *ah = sc->sc_ah;
479  bool stopped, reset = false;
480 
481  spin_lock_bh(&sc->rx.rxbuflock);
483  ath9k_hw_setrxfilter(ah, 0);
484  stopped = ath9k_hw_stopdmarecv(ah, &reset);
485 
486  if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
487  ath_edma_stop_recv(sc);
488  else
489  sc->rx.rxlink = NULL;
490  spin_unlock_bh(&sc->rx.rxbuflock);
491 
492  if (!(ah->ah_flags & AH_UNPLUGGED) &&
493  unlikely(!stopped)) {
494  ath_err(ath9k_hw_common(sc->sc_ah),
495  "Could not stop RX, we could be "
496  "confusing the DMA engine when we start RX up\n");
497  ATH_DBG_WARN_ON_ONCE(!stopped);
498  }
499  return stopped && !reset;
500 }
501 
502 void ath_flushrecv(struct ath_softc *sc)
503 {
505  if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
506  ath_rx_tasklet(sc, 1, true);
507  ath_rx_tasklet(sc, 1, false);
509 }
510 
511 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
512 {
513  /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
514  struct ieee80211_mgmt *mgmt;
515  u8 *pos, *end, id, elen;
516  struct ieee80211_tim_ie *tim;
517 
518  mgmt = (struct ieee80211_mgmt *)skb->data;
519  pos = mgmt->u.beacon.variable;
520  end = skb->data + skb->len;
521 
522  while (pos + 2 < end) {
523  id = *pos++;
524  elen = *pos++;
525  if (pos + elen > end)
526  break;
527 
528  if (id == WLAN_EID_TIM) {
529  if (elen < sizeof(*tim))
530  break;
531  tim = (struct ieee80211_tim_ie *) pos;
532  if (tim->dtim_count != 0)
533  break;
534  return tim->bitmap_ctrl & 0x01;
535  }
536 
537  pos += elen;
538  }
539 
540  return false;
541 }
542 
543 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
544 {
545  struct ath_common *common = ath9k_hw_common(sc->sc_ah);
546 
547  if (skb->len < 24 + 8 + 2 + 2)
548  return;
549 
551 
552  if (sc->ps_flags & PS_BEACON_SYNC) {
553  sc->ps_flags &= ~PS_BEACON_SYNC;
554  ath_dbg(common, PS,
555  "Reconfigure Beacon timers based on timestamp from the AP\n");
556  ath9k_set_beacon(sc);
557  }
558 
559  if (ath_beacon_dtim_pending_cab(skb)) {
560  /*
561  * Remain awake waiting for buffered broadcast/multicast
562  * frames. If the last broadcast/multicast frame is not
563  * received properly, the next beacon frame will work as
564  * a backup trigger for returning into NETWORK SLEEP state,
565  * so we are waiting for it as well.
566  */
567  ath_dbg(common, PS,
568  "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
570  return;
571  }
572 
573  if (sc->ps_flags & PS_WAIT_FOR_CAB) {
574  /*
575  * This can happen if a broadcast frame is dropped or the AP
576  * fails to send a frame indicating that all CAB frames have
577  * been delivered.
578  */
579  sc->ps_flags &= ~PS_WAIT_FOR_CAB;
580  ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
581  }
582 }
583 
584 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
585 {
586  struct ieee80211_hdr *hdr;
587  struct ath_common *common = ath9k_hw_common(sc->sc_ah);
588 
589  hdr = (struct ieee80211_hdr *)skb->data;
590 
591  /* Process Beacon and CAB receive in PS state */
592  if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
593  && mybeacon) {
594  ath_rx_ps_beacon(sc, skb);
595  } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
596  (ieee80211_is_data(hdr->frame_control) ||
597  ieee80211_is_action(hdr->frame_control)) &&
598  is_multicast_ether_addr(hdr->addr1) &&
599  !ieee80211_has_moredata(hdr->frame_control)) {
600  /*
601  * No more broadcast/multicast frames to be received at this
602  * point.
603  */
605  ath_dbg(common, PS,
606  "All PS CAB frames received, back to sleep\n");
607  } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
608  !is_multicast_ether_addr(hdr->addr1) &&
609  !ieee80211_has_morefrags(hdr->frame_control)) {
611  ath_dbg(common, PS,
612  "Going back to sleep after having received PS-Poll data (0x%lx)\n",
617  }
618 }
619 
620 static bool ath_edma_get_buffers(struct ath_softc *sc,
621  enum ath9k_rx_qtype qtype,
622  struct ath_rx_status *rs,
623  struct ath_buf **dest)
624 {
625  struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
626  struct ath_hw *ah = sc->sc_ah;
627  struct ath_common *common = ath9k_hw_common(ah);
628  struct sk_buff *skb;
629  struct ath_buf *bf;
630  int ret;
631 
632  skb = skb_peek(&rx_edma->rx_fifo);
633  if (!skb)
634  return false;
635 
636  bf = SKB_CB_ATHBUF(skb);
637  BUG_ON(!bf);
638 
640  common->rx_bufsize, DMA_FROM_DEVICE);
641 
642  ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
643  if (ret == -EINPROGRESS) {
644  /*let device gain the buffer again*/
646  common->rx_bufsize, DMA_FROM_DEVICE);
647  return false;
648  }
649 
650  __skb_unlink(skb, &rx_edma->rx_fifo);
651  if (ret == -EINVAL) {
652  /* corrupt descriptor, skip this one and the following one */
653  list_add_tail(&bf->list, &sc->rx.rxbuf);
654  ath_rx_edma_buf_link(sc, qtype);
655 
656  skb = skb_peek(&rx_edma->rx_fifo);
657  if (skb) {
658  bf = SKB_CB_ATHBUF(skb);
659  BUG_ON(!bf);
660 
661  __skb_unlink(skb, &rx_edma->rx_fifo);
662  list_add_tail(&bf->list, &sc->rx.rxbuf);
663  ath_rx_edma_buf_link(sc, qtype);
664  }
665 
666  bf = NULL;
667  }
668 
669  *dest = bf;
670  return true;
671 }
672 
673 static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
674  struct ath_rx_status *rs,
675  enum ath9k_rx_qtype qtype)
676 {
677  struct ath_buf *bf = NULL;
678 
679  while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
680  if (!bf)
681  continue;
682 
683  return bf;
684  }
685  return NULL;
686 }
687 
688 static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
689  struct ath_rx_status *rs)
690 {
691  struct ath_hw *ah = sc->sc_ah;
692  struct ath_common *common = ath9k_hw_common(ah);
693  struct ath_desc *ds;
694  struct ath_buf *bf;
695  int ret;
696 
697  if (list_empty(&sc->rx.rxbuf)) {
698  sc->rx.rxlink = NULL;
699  return NULL;
700  }
701 
702  bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
703  ds = bf->bf_desc;
704 
705  /*
706  * Must provide the virtual address of the current
707  * descriptor, the physical address, and the virtual
708  * address of the next descriptor in the h/w chain.
709  * This allows the HAL to look ahead to see if the
710  * hardware is done with a descriptor by checking the
711  * done bit in the following descriptor and the address
712  * of the current descriptor the DMA engine is working
713  * on. All this is necessary because of our use of
714  * a self-linked list to avoid rx overruns.
715  */
716  ret = ath9k_hw_rxprocdesc(ah, ds, rs);
717  if (ret == -EINPROGRESS) {
718  struct ath_rx_status trs;
719  struct ath_buf *tbf;
720  struct ath_desc *tds;
721 
722  memset(&trs, 0, sizeof(trs));
723  if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
724  sc->rx.rxlink = NULL;
725  return NULL;
726  }
727 
728  tbf = list_entry(bf->list.next, struct ath_buf, list);
729 
730  /*
731  * On some hardware the descriptor status words could
732  * get corrupted, including the done bit. Because of
733  * this, check if the next descriptor's done bit is
734  * set or not.
735  *
736  * If the next descriptor's done bit is set, the current
737  * descriptor has been corrupted. Force s/w to discard
738  * this descriptor and continue...
739  */
740 
741  tds = tbf->bf_desc;
742  ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
743  if (ret == -EINPROGRESS)
744  return NULL;
745  }
746 
747  if (!bf->bf_mpdu)
748  return bf;
749 
750  /*
751  * Synchronize the DMA transfer with CPU before
752  * 1. accessing the frame
753  * 2. requeueing the same buffer to h/w
754  */
756  common->rx_bufsize,
758 
759  return bf;
760 }
761 
762 /* Assumes you've already done the endian to CPU conversion */
763 static bool ath9k_rx_accept(struct ath_common *common,
764  struct ieee80211_hdr *hdr,
765  struct ieee80211_rx_status *rxs,
766  struct ath_rx_status *rx_stats,
767  bool *decrypt_error)
768 {
769  struct ath_softc *sc = (struct ath_softc *) common->priv;
770  bool is_mc, is_valid_tkip, strip_mic, mic_error;
771  struct ath_hw *ah = common->ah;
772  __le16 fc;
773  u8 rx_status_len = ah->caps.rx_status_len;
774 
775  fc = hdr->frame_control;
776 
777  is_mc = !!is_multicast_ether_addr(hdr->addr1);
778  is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID &&
779  test_bit(rx_stats->rs_keyix, common->tkip_keymap);
780  strip_mic = is_valid_tkip && ieee80211_is_data(fc) &&
781  ieee80211_has_protected(fc) &&
782  !(rx_stats->rs_status &
785 
786  /*
787  * Key miss events are only relevant for pairwise keys where the
788  * descriptor does contain a valid key index. This has been observed
789  * mostly with CCMP encryption.
790  */
791  if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID ||
792  !test_bit(rx_stats->rs_keyix, common->ccmp_keymap))
793  rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS;
794 
795  if (!rx_stats->rs_datalen) {
796  RX_STAT_INC(rx_len_err);
797  return false;
798  }
799 
800  /*
801  * rs_status follows rs_datalen so if rs_datalen is too large
802  * we can take a hint that hardware corrupted it, so ignore
803  * those frames.
804  */
805  if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len)) {
806  RX_STAT_INC(rx_len_err);
807  return false;
808  }
809 
810  /* Only use error bits from the last fragment */
811  if (rx_stats->rs_more)
812  return true;
813 
814  mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) &&
815  !ieee80211_has_morefrags(fc) &&
817  (rx_stats->rs_status & ATH9K_RXERR_MIC);
818 
819  /*
820  * The rx_stats->rs_status will not be set until the end of the
821  * chained descriptors so it can be ignored if rs_more is set. The
822  * rs_more will be false at the last element of the chained
823  * descriptors.
824  */
825  if (rx_stats->rs_status != 0) {
826  u8 status_mask;
827 
828  if (rx_stats->rs_status & ATH9K_RXERR_CRC) {
830  mic_error = false;
831  }
832  if (rx_stats->rs_status & ATH9K_RXERR_PHY)
833  return false;
834 
835  if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) ||
836  (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) {
837  *decrypt_error = true;
838  mic_error = false;
839  }
840 
841  /*
842  * Reject error frames with the exception of
843  * decryption and MIC failures. For monitor mode,
844  * we also ignore the CRC error.
845  */
846  status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
848 
849  if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL))
850  status_mask |= ATH9K_RXERR_CRC;
851 
852  if (rx_stats->rs_status & ~status_mask)
853  return false;
854  }
855 
856  /*
857  * For unicast frames the MIC error bit can have false positives,
858  * so all MIC error reports need to be validated in software.
859  * False negatives are not common, so skip software verification
860  * if the hardware considers the MIC valid.
861  */
862  if (strip_mic)
863  rxs->flag |= RX_FLAG_MMIC_STRIPPED;
864  else if (is_mc && mic_error)
865  rxs->flag |= RX_FLAG_MMIC_ERROR;
866 
867  return true;
868 }
869 
870 static int ath9k_process_rate(struct ath_common *common,
871  struct ieee80211_hw *hw,
872  struct ath_rx_status *rx_stats,
873  struct ieee80211_rx_status *rxs)
874 {
875  struct ieee80211_supported_band *sband;
876  enum ieee80211_band band;
877  unsigned int i = 0;
878  struct ath_softc __maybe_unused *sc = common->priv;
879 
880  band = hw->conf.channel->band;
881  sband = hw->wiphy->bands[band];
882 
883  if (rx_stats->rs_rate & 0x80) {
884  /* HT rate */
885  rxs->flag |= RX_FLAG_HT;
886  if (rx_stats->rs_flags & ATH9K_RX_2040)
887  rxs->flag |= RX_FLAG_40MHZ;
888  if (rx_stats->rs_flags & ATH9K_RX_GI)
889  rxs->flag |= RX_FLAG_SHORT_GI;
890  rxs->rate_idx = rx_stats->rs_rate & 0x7f;
891  return 0;
892  }
893 
894  for (i = 0; i < sband->n_bitrates; i++) {
895  if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
896  rxs->rate_idx = i;
897  return 0;
898  }
899  if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
900  rxs->flag |= RX_FLAG_SHORTPRE;
901  rxs->rate_idx = i;
902  return 0;
903  }
904  }
905 
906  /*
907  * No valid hardware bitrate found -- we should not get here
908  * because hardware has already validated this frame as OK.
909  */
910  ath_dbg(common, ANY,
911  "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
912  rx_stats->rs_rate);
913  RX_STAT_INC(rx_rate_err);
914  return -EINVAL;
915 }
916 
917 static void ath9k_process_rssi(struct ath_common *common,
918  struct ieee80211_hw *hw,
919  struct ieee80211_hdr *hdr,
920  struct ath_rx_status *rx_stats)
921 {
922  struct ath_softc *sc = hw->priv;
923  struct ath_hw *ah = common->ah;
924  int last_rssi;
925  int rssi = rx_stats->rs_rssi;
926 
927  if (!rx_stats->is_mybeacon ||
928  ((ah->opmode != NL80211_IFTYPE_STATION) &&
929  (ah->opmode != NL80211_IFTYPE_ADHOC)))
930  return;
931 
932  if (rx_stats->rs_rssi != ATH9K_RSSI_BAD && !rx_stats->rs_moreaggr)
933  ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi);
934 
935  last_rssi = sc->last_rssi;
936  if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
937  rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER);
938  if (rssi < 0)
939  rssi = 0;
940 
941  /* Update Beacon RSSI, this is used by ANI. */
942  ah->stats.avgbrssi = rssi;
943 }
944 
945 /*
946  * For Decrypt or Demic errors, we only mark packet status here and always push
947  * up the frame up to let mac80211 handle the actual error case, be it no
948  * decryption key or real decryption error. This let us keep statistics there.
949  */
950 static int ath9k_rx_skb_preprocess(struct ath_common *common,
951  struct ieee80211_hw *hw,
952  struct ieee80211_hdr *hdr,
953  struct ath_rx_status *rx_stats,
955  bool *decrypt_error)
956 {
957  struct ath_hw *ah = common->ah;
958 
959  /*
960  * everything but the rate is checked here, the rate check is done
961  * separately to avoid doing two lookups for a rate for each frame.
962  */
963  if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error))
964  return -EINVAL;
965 
966  /* Only use status info from the last fragment */
967  if (rx_stats->rs_more)
968  return 0;
969 
970  ath9k_process_rssi(common, hw, hdr, rx_stats);
971 
972  if (ath9k_process_rate(common, hw, rx_stats, rx_status))
973  return -EINVAL;
974 
975  rx_status->band = hw->conf.channel->band;
976  rx_status->freq = hw->conf.channel->center_freq;
977  rx_status->signal = ah->noise + rx_stats->rs_rssi;
978  rx_status->antenna = rx_stats->rs_antenna;
979  rx_status->flag |= RX_FLAG_MACTIME_MPDU;
980  if (rx_stats->rs_moreaggr)
981  rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
982 
983  return 0;
984 }
985 
986 static void ath9k_rx_skb_postprocess(struct ath_common *common,
987  struct sk_buff *skb,
988  struct ath_rx_status *rx_stats,
989  struct ieee80211_rx_status *rxs,
990  bool decrypt_error)
991 {
992  struct ath_hw *ah = common->ah;
993  struct ieee80211_hdr *hdr;
994  int hdrlen, padpos, padsize;
995  u8 keyix;
996  __le16 fc;
997 
998  /* see if any padding is done by the hw and remove it */
999  hdr = (struct ieee80211_hdr *) skb->data;
1000  hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1001  fc = hdr->frame_control;
1002  padpos = ath9k_cmn_padpos(hdr->frame_control);
1003 
1004  /* The MAC header is padded to have 32-bit boundary if the
1005  * packet payload is non-zero. The general calculation for
1006  * padsize would take into account odd header lengths:
1007  * padsize = (4 - padpos % 4) % 4; However, since only
1008  * even-length headers are used, padding can only be 0 or 2
1009  * bytes and we can optimize this a bit. In addition, we must
1010  * not try to remove padding from short control frames that do
1011  * not have payload. */
1012  padsize = padpos & 3;
1013  if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
1014  memmove(skb->data + padsize, skb->data, padpos);
1015  skb_pull(skb, padsize);
1016  }
1017 
1018  keyix = rx_stats->rs_keyix;
1019 
1020  if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
1021  ieee80211_has_protected(fc)) {
1022  rxs->flag |= RX_FLAG_DECRYPTED;
1023  } else if (ieee80211_has_protected(fc)
1024  && !decrypt_error && skb->len >= hdrlen + 4) {
1025  keyix = skb->data[hdrlen + 3] >> 6;
1026 
1027  if (test_bit(keyix, common->keymap))
1028  rxs->flag |= RX_FLAG_DECRYPTED;
1029  }
1030  if (ah->sw_mgmt_crypto &&
1031  (rxs->flag & RX_FLAG_DECRYPTED) &&
1032  ieee80211_is_mgmt(fc))
1033  /* Use software decrypt for management frames. */
1034  rxs->flag &= ~RX_FLAG_DECRYPTED;
1035 }
1036 
1037 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1038 {
1039  struct ath_buf *bf;
1040  struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1041  struct ieee80211_rx_status *rxs;
1042  struct ath_hw *ah = sc->sc_ah;
1043  struct ath_common *common = ath9k_hw_common(ah);
1044  struct ieee80211_hw *hw = sc->hw;
1045  struct ieee80211_hdr *hdr;
1046  int retval;
1047  struct ath_rx_status rs;
1048  enum ath9k_rx_qtype qtype;
1049  bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1050  int dma_type;
1051  u8 rx_status_len = ah->caps.rx_status_len;
1052  u64 tsf = 0;
1053  u32 tsf_lower = 0;
1054  unsigned long flags;
1055 
1056  if (edma)
1057  dma_type = DMA_BIDIRECTIONAL;
1058  else
1059  dma_type = DMA_FROM_DEVICE;
1060 
1061  qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1062  spin_lock_bh(&sc->rx.rxbuflock);
1063 
1064  tsf = ath9k_hw_gettsf64(ah);
1065  tsf_lower = tsf & 0xffffffff;
1066 
1067  do {
1068  bool decrypt_error = false;
1069  /* If handling rx interrupt and flush is in progress => exit */
1070  if (test_bit(SC_OP_RXFLUSH, &sc->sc_flags) && (flush == 0))
1071  break;
1072 
1073  memset(&rs, 0, sizeof(rs));
1074  if (edma)
1075  bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1076  else
1077  bf = ath_get_next_rx_buf(sc, &rs);
1078 
1079  if (!bf)
1080  break;
1081 
1082  skb = bf->bf_mpdu;
1083  if (!skb)
1084  continue;
1085 
1086  /*
1087  * Take frame header from the first fragment and RX status from
1088  * the last one.
1089  */
1090  if (sc->rx.frag)
1091  hdr_skb = sc->rx.frag;
1092  else
1093  hdr_skb = skb;
1094 
1095  hdr = (struct ieee80211_hdr *) (hdr_skb->data + rx_status_len);
1096  rxs = IEEE80211_SKB_RXCB(hdr_skb);
1097  if (ieee80211_is_beacon(hdr->frame_control)) {
1098  RX_STAT_INC(rx_beacons);
1099  if (!is_zero_ether_addr(common->curbssid) &&
1100  ether_addr_equal(hdr->addr3, common->curbssid))
1101  rs.is_mybeacon = true;
1102  else
1103  rs.is_mybeacon = false;
1104  }
1105  else
1106  rs.is_mybeacon = false;
1107 
1108  sc->rx.num_pkts++;
1109  ath_debug_stat_rx(sc, &rs);
1110 
1111  /*
1112  * If we're asked to flush receive queue, directly
1113  * chain it back at the queue without processing it.
1114  */
1115  if (test_bit(SC_OP_RXFLUSH, &sc->sc_flags)) {
1116  RX_STAT_INC(rx_drop_rxflush);
1117  goto requeue_drop_frag;
1118  }
1119 
1120  memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1121 
1122  rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp;
1123  if (rs.rs_tstamp > tsf_lower &&
1124  unlikely(rs.rs_tstamp - tsf_lower > 0x10000000))
1125  rxs->mactime -= 0x100000000ULL;
1126 
1127  if (rs.rs_tstamp < tsf_lower &&
1128  unlikely(tsf_lower - rs.rs_tstamp > 0x10000000))
1129  rxs->mactime += 0x100000000ULL;
1130 
1131  retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs,
1132  rxs, &decrypt_error);
1133  if (retval)
1134  goto requeue_drop_frag;
1135 
1136  if (rs.is_mybeacon) {
1137  sc->hw_busy_count = 0;
1138  ath_start_rx_poll(sc, 3);
1139  }
1140  /* Ensure we always have an skb to requeue once we are done
1141  * processing the current buffer's skb */
1142  requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1143 
1144  /* If there is no memory we ignore the current RX'd frame,
1145  * tell hardware it can give us a new frame using the old
1146  * skb and put it at the tail of the sc->rx.rxbuf list for
1147  * processing. */
1148  if (!requeue_skb) {
1149  RX_STAT_INC(rx_oom_err);
1150  goto requeue_drop_frag;
1151  }
1152 
1153  /* Unmap the frame */
1154  dma_unmap_single(sc->dev, bf->bf_buf_addr,
1155  common->rx_bufsize,
1156  dma_type);
1157 
1158  skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1159  if (ah->caps.rx_status_len)
1160  skb_pull(skb, ah->caps.rx_status_len);
1161 
1162  if (!rs.rs_more)
1163  ath9k_rx_skb_postprocess(common, hdr_skb, &rs,
1164  rxs, decrypt_error);
1165 
1166  /* We will now give hardware our shiny new allocated skb */
1167  bf->bf_mpdu = requeue_skb;
1168  bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1169  common->rx_bufsize,
1170  dma_type);
1171  if (unlikely(dma_mapping_error(sc->dev,
1172  bf->bf_buf_addr))) {
1173  dev_kfree_skb_any(requeue_skb);
1174  bf->bf_mpdu = NULL;
1175  bf->bf_buf_addr = 0;
1176  ath_err(common, "dma_mapping_error() on RX\n");
1177  ieee80211_rx(hw, skb);
1178  break;
1179  }
1180 
1181  if (rs.rs_more) {
1182  RX_STAT_INC(rx_frags);
1183  /*
1184  * rs_more indicates chained descriptors which can be
1185  * used to link buffers together for a sort of
1186  * scatter-gather operation.
1187  */
1188  if (sc->rx.frag) {
1189  /* too many fragments - cannot handle frame */
1190  dev_kfree_skb_any(sc->rx.frag);
1191  dev_kfree_skb_any(skb);
1192  RX_STAT_INC(rx_too_many_frags_err);
1193  skb = NULL;
1194  }
1195  sc->rx.frag = skb;
1196  goto requeue;
1197  }
1198 
1199  if (sc->rx.frag) {
1200  int space = skb->len - skb_tailroom(hdr_skb);
1201 
1202  if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1203  dev_kfree_skb(skb);
1204  RX_STAT_INC(rx_oom_err);
1205  goto requeue_drop_frag;
1206  }
1207 
1208  sc->rx.frag = NULL;
1209 
1210  skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1211  skb->len);
1212  dev_kfree_skb_any(skb);
1213  skb = hdr_skb;
1214  }
1215 
1216 
1217  if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
1218 
1219  /*
1220  * change the default rx antenna if rx diversity
1221  * chooses the other antenna 3 times in a row.
1222  */
1223  if (sc->rx.defant != rs.rs_antenna) {
1224  if (++sc->rx.rxotherant >= 3)
1225  ath_setdefantenna(sc, rs.rs_antenna);
1226  } else {
1227  sc->rx.rxotherant = 0;
1228  }
1229 
1230  }
1231 
1232  if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1233  skb_trim(skb, skb->len - 8);
1234 
1235  spin_lock_irqsave(&sc->sc_pm_lock, flags);
1236  if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1237  PS_WAIT_FOR_CAB |
1239  ath9k_check_auto_sleep(sc))
1240  ath_rx_ps(sc, skb, rs.is_mybeacon);
1241  spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1242 
1243  if ((ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) && sc->ant_rx == 3)
1244  ath_ant_comb_scan(sc, &rs);
1245 
1246  ieee80211_rx(hw, skb);
1247 
1248 requeue_drop_frag:
1249  if (sc->rx.frag) {
1250  dev_kfree_skb_any(sc->rx.frag);
1251  sc->rx.frag = NULL;
1252  }
1253 requeue:
1254  if (edma) {
1255  list_add_tail(&bf->list, &sc->rx.rxbuf);
1256  ath_rx_edma_buf_link(sc, qtype);
1257  } else {
1258  list_move_tail(&bf->list, &sc->rx.rxbuf);
1259  ath_rx_buf_link(sc, bf);
1260  if (!flush)
1261  ath9k_hw_rxena(ah);
1262  }
1263  } while (1);
1264 
1265  spin_unlock_bh(&sc->rx.rxbuflock);
1266 
1267  if (!(ah->imask & ATH9K_INT_RXEOL)) {
1270  }
1271 
1272  return 0;
1273 }