Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
edac_mc_sysfs.c
Go to the documentation of this file.
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <[email protected]> www.softwarebitmaker.com
9  *
10  * (c) 2012 - Mauro Carvalho Chehab <[email protected]>
11  * The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_core.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
33 {
34  return edac_mc_log_ue;
35 }
36 
38 {
39  return edac_mc_log_ce;
40 }
41 
43 {
44  return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
49 {
50  return edac_mc_poll_msec;
51 }
52 
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55  long l;
56  int ret;
57 
58  if (!val)
59  return -EINVAL;
60 
61  ret = strict_strtol(val, 0, &l);
62  if (ret == -EINVAL || ((int)l != l))
63  return -EINVAL;
64  *((int *)kp->arg) = l;
65 
66  /* notify edac_mc engine to reset the poll period */
68 
69  return 0;
70 }
71 
72 /* Parameter declarations for above */
73 module_param(edac_mc_panic_on_ue, int, 0644);
74 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
75 module_param(edac_mc_log_ue, int, 0644);
76 MODULE_PARM_DESC(edac_mc_log_ue,
77  "Log uncorrectable error to console: 0=off 1=on");
78 module_param(edac_mc_log_ce, int, 0644);
79 MODULE_PARM_DESC(edac_mc_log_ce,
80  "Log correctable error to console: 0=off 1=on");
81 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
82  &edac_mc_poll_msec, 0644);
83 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
84 
85 static struct device *mci_pdev;
86 
87 /*
88  * various constants for Memory Controllers
89  */
90 static const char *mem_types[] = {
91  [MEM_EMPTY] = "Empty",
92  [MEM_RESERVED] = "Reserved",
93  [MEM_UNKNOWN] = "Unknown",
94  [MEM_FPM] = "FPM",
95  [MEM_EDO] = "EDO",
96  [MEM_BEDO] = "BEDO",
97  [MEM_SDR] = "Unbuffered-SDR",
98  [MEM_RDR] = "Registered-SDR",
99  [MEM_DDR] = "Unbuffered-DDR",
100  [MEM_RDDR] = "Registered-DDR",
101  [MEM_RMBS] = "RMBS",
102  [MEM_DDR2] = "Unbuffered-DDR2",
103  [MEM_FB_DDR2] = "FullyBuffered-DDR2",
104  [MEM_RDDR2] = "Registered-DDR2",
105  [MEM_XDR] = "XDR",
106  [MEM_DDR3] = "Unbuffered-DDR3",
107  [MEM_RDDR3] = "Registered-DDR3"
108 };
109 
110 static const char *dev_types[] = {
111  [DEV_UNKNOWN] = "Unknown",
112  [DEV_X1] = "x1",
113  [DEV_X2] = "x2",
114  [DEV_X4] = "x4",
115  [DEV_X8] = "x8",
116  [DEV_X16] = "x16",
117  [DEV_X32] = "x32",
118  [DEV_X64] = "x64"
119 };
120 
121 static const char *edac_caps[] = {
122  [EDAC_UNKNOWN] = "Unknown",
123  [EDAC_NONE] = "None",
124  [EDAC_RESERVED] = "Reserved",
125  [EDAC_PARITY] = "PARITY",
126  [EDAC_EC] = "EC",
127  [EDAC_SECDED] = "SECDED",
128  [EDAC_S2ECD2ED] = "S2ECD2ED",
129  [EDAC_S4ECD4ED] = "S4ECD4ED",
130  [EDAC_S8ECD8ED] = "S8ECD8ED",
131  [EDAC_S16ECD16ED] = "S16ECD16ED"
132 };
133 
134 #ifdef CONFIG_EDAC_LEGACY_SYSFS
135 /*
136  * EDAC sysfs CSROW data structures and methods
137  */
138 
139 #define to_csrow(k) container_of(k, struct csrow_info, dev)
140 
141 /*
142  * We need it to avoid namespace conflicts between the legacy API
143  * and the per-dimm/per-rank one
144  */
145 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
146  struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
147 
148 struct dev_ch_attribute {
149  struct device_attribute attr;
150  int channel;
151 };
152 
153 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
154  struct dev_ch_attribute dev_attr_legacy_##_name = \
155  { __ATTR(_name, _mode, _show, _store), (_var) }
156 
157 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
158 
159 /* Set of more default csrow<id> attribute show/store functions */
160 static ssize_t csrow_ue_count_show(struct device *dev,
161  struct device_attribute *mattr, char *data)
162 {
163  struct csrow_info *csrow = to_csrow(dev);
164 
165  return sprintf(data, "%u\n", csrow->ue_count);
166 }
167 
168 static ssize_t csrow_ce_count_show(struct device *dev,
169  struct device_attribute *mattr, char *data)
170 {
171  struct csrow_info *csrow = to_csrow(dev);
172 
173  return sprintf(data, "%u\n", csrow->ce_count);
174 }
175 
176 static ssize_t csrow_size_show(struct device *dev,
177  struct device_attribute *mattr, char *data)
178 {
179  struct csrow_info *csrow = to_csrow(dev);
180  int i;
181  u32 nr_pages = 0;
182 
183  for (i = 0; i < csrow->nr_channels; i++)
184  nr_pages += csrow->channels[i]->dimm->nr_pages;
185  return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
186 }
187 
188 static ssize_t csrow_mem_type_show(struct device *dev,
189  struct device_attribute *mattr, char *data)
190 {
191  struct csrow_info *csrow = to_csrow(dev);
192 
193  return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
194 }
195 
196 static ssize_t csrow_dev_type_show(struct device *dev,
197  struct device_attribute *mattr, char *data)
198 {
199  struct csrow_info *csrow = to_csrow(dev);
200 
201  return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
202 }
203 
204 static ssize_t csrow_edac_mode_show(struct device *dev,
205  struct device_attribute *mattr,
206  char *data)
207 {
208  struct csrow_info *csrow = to_csrow(dev);
209 
210  return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
211 }
212 
213 /* show/store functions for DIMM Label attributes */
214 static ssize_t channel_dimm_label_show(struct device *dev,
215  struct device_attribute *mattr,
216  char *data)
217 {
218  struct csrow_info *csrow = to_csrow(dev);
219  unsigned chan = to_channel(mattr);
220  struct rank_info *rank = csrow->channels[chan];
221 
222  /* if field has not been initialized, there is nothing to send */
223  if (!rank->dimm->label[0])
224  return 0;
225 
226  return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
227  rank->dimm->label);
228 }
229 
230 static ssize_t channel_dimm_label_store(struct device *dev,
231  struct device_attribute *mattr,
232  const char *data, size_t count)
233 {
234  struct csrow_info *csrow = to_csrow(dev);
235  unsigned chan = to_channel(mattr);
236  struct rank_info *rank = csrow->channels[chan];
237 
238  ssize_t max_size = 0;
239 
240  max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
241  strncpy(rank->dimm->label, data, max_size);
242  rank->dimm->label[max_size] = '\0';
243 
244  return max_size;
245 }
246 
247 /* show function for dynamic chX_ce_count attribute */
248 static ssize_t channel_ce_count_show(struct device *dev,
249  struct device_attribute *mattr, char *data)
250 {
251  struct csrow_info *csrow = to_csrow(dev);
252  unsigned chan = to_channel(mattr);
253  struct rank_info *rank = csrow->channels[chan];
254 
255  return sprintf(data, "%u\n", rank->ce_count);
256 }
257 
258 /* cwrow<id>/attribute files */
259 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
260 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
261 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
262 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
263 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
264 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
265 
266 /* default attributes of the CSROW<id> object */
267 static struct attribute *csrow_attrs[] = {
268  &dev_attr_legacy_dev_type.attr,
269  &dev_attr_legacy_mem_type.attr,
270  &dev_attr_legacy_edac_mode.attr,
271  &dev_attr_legacy_size_mb.attr,
272  &dev_attr_legacy_ue_count.attr,
273  &dev_attr_legacy_ce_count.attr,
274  NULL,
275 };
276 
277 static struct attribute_group csrow_attr_grp = {
278  .attrs = csrow_attrs,
279 };
280 
281 static const struct attribute_group *csrow_attr_groups[] = {
282  &csrow_attr_grp,
283  NULL
284 };
285 
286 static void csrow_attr_release(struct device *dev)
287 {
288  struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
289 
290  edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
291  kfree(csrow);
292 }
293 
294 static struct device_type csrow_attr_type = {
295  .groups = csrow_attr_groups,
296  .release = csrow_attr_release,
297 };
298 
299 /*
300  * possible dynamic channel DIMM Label attribute files
301  *
302  */
303 
304 #define EDAC_NR_CHANNELS 6
305 
306 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
307  channel_dimm_label_show, channel_dimm_label_store, 0);
308 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
309  channel_dimm_label_show, channel_dimm_label_store, 1);
310 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
311  channel_dimm_label_show, channel_dimm_label_store, 2);
312 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
313  channel_dimm_label_show, channel_dimm_label_store, 3);
314 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
315  channel_dimm_label_show, channel_dimm_label_store, 4);
316 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
317  channel_dimm_label_show, channel_dimm_label_store, 5);
318 
319 /* Total possible dynamic DIMM Label attribute file table */
320 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
321  &dev_attr_legacy_ch0_dimm_label.attr,
322  &dev_attr_legacy_ch1_dimm_label.attr,
323  &dev_attr_legacy_ch2_dimm_label.attr,
324  &dev_attr_legacy_ch3_dimm_label.attr,
325  &dev_attr_legacy_ch4_dimm_label.attr,
326  &dev_attr_legacy_ch5_dimm_label.attr
327 };
328 
329 /* possible dynamic channel ce_count attribute files */
330 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO | S_IWUSR,
331  channel_ce_count_show, NULL, 0);
332 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO | S_IWUSR,
333  channel_ce_count_show, NULL, 1);
334 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO | S_IWUSR,
335  channel_ce_count_show, NULL, 2);
336 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO | S_IWUSR,
337  channel_ce_count_show, NULL, 3);
338 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO | S_IWUSR,
339  channel_ce_count_show, NULL, 4);
340 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO | S_IWUSR,
341  channel_ce_count_show, NULL, 5);
342 
343 /* Total possible dynamic ce_count attribute file table */
344 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
345  &dev_attr_legacy_ch0_ce_count.attr,
346  &dev_attr_legacy_ch1_ce_count.attr,
347  &dev_attr_legacy_ch2_ce_count.attr,
348  &dev_attr_legacy_ch3_ce_count.attr,
349  &dev_attr_legacy_ch4_ce_count.attr,
350  &dev_attr_legacy_ch5_ce_count.attr
351 };
352 
353 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
354 {
355  int chan, nr_pages = 0;
356 
357  for (chan = 0; chan < csrow->nr_channels; chan++)
358  nr_pages += csrow->channels[chan]->dimm->nr_pages;
359 
360  return nr_pages;
361 }
362 
363 /* Create a CSROW object under specifed edac_mc_device */
364 static int edac_create_csrow_object(struct mem_ctl_info *mci,
365  struct csrow_info *csrow, int index)
366 {
367  int err, chan;
368 
369  if (csrow->nr_channels >= EDAC_NR_CHANNELS)
370  return -ENODEV;
371 
372  csrow->dev.type = &csrow_attr_type;
373  csrow->dev.bus = &mci->bus;
374  device_initialize(&csrow->dev);
375  csrow->dev.parent = &mci->dev;
376  dev_set_name(&csrow->dev, "csrow%d", index);
377  dev_set_drvdata(&csrow->dev, csrow);
378 
379  edac_dbg(0, "creating (virtual) csrow node %s\n",
380  dev_name(&csrow->dev));
381 
382  err = device_add(&csrow->dev);
383  if (err < 0)
384  return err;
385 
386  for (chan = 0; chan < csrow->nr_channels; chan++) {
387  /* Only expose populated DIMMs */
388  if (!csrow->channels[chan]->dimm->nr_pages)
389  continue;
390  err = device_create_file(&csrow->dev,
391  dynamic_csrow_dimm_attr[chan]);
392  if (err < 0)
393  goto error;
394  err = device_create_file(&csrow->dev,
395  dynamic_csrow_ce_count_attr[chan]);
396  if (err < 0) {
397  device_remove_file(&csrow->dev,
398  dynamic_csrow_dimm_attr[chan]);
399  goto error;
400  }
401  }
402 
403  return 0;
404 
405 error:
406  for (--chan; chan >= 0; chan--) {
407  device_remove_file(&csrow->dev,
408  dynamic_csrow_dimm_attr[chan]);
409  device_remove_file(&csrow->dev,
410  dynamic_csrow_ce_count_attr[chan]);
411  }
412  put_device(&csrow->dev);
413 
414  return err;
415 }
416 
417 /* Create a CSROW object under specifed edac_mc_device */
418 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
419 {
420  int err, i, chan;
421  struct csrow_info *csrow;
422 
423  for (i = 0; i < mci->nr_csrows; i++) {
424  csrow = mci->csrows[i];
425  if (!nr_pages_per_csrow(csrow))
426  continue;
427  err = edac_create_csrow_object(mci, mci->csrows[i], i);
428  if (err < 0)
429  goto error;
430  }
431  return 0;
432 
433 error:
434  for (--i; i >= 0; i--) {
435  csrow = mci->csrows[i];
436  if (!nr_pages_per_csrow(csrow))
437  continue;
438  for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
439  if (!csrow->channels[chan]->dimm->nr_pages)
440  continue;
441  device_remove_file(&csrow->dev,
442  dynamic_csrow_dimm_attr[chan]);
443  device_remove_file(&csrow->dev,
444  dynamic_csrow_ce_count_attr[chan]);
445  }
446  put_device(&mci->csrows[i]->dev);
447  }
448 
449  return err;
450 }
451 
452 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
453 {
454  int i, chan;
455  struct csrow_info *csrow;
456 
457  for (i = mci->nr_csrows - 1; i >= 0; i--) {
458  csrow = mci->csrows[i];
459  if (!nr_pages_per_csrow(csrow))
460  continue;
461  for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
462  if (!csrow->channels[chan]->dimm->nr_pages)
463  continue;
464  edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
465  i, chan);
466  device_remove_file(&csrow->dev,
467  dynamic_csrow_dimm_attr[chan]);
468  device_remove_file(&csrow->dev,
469  dynamic_csrow_ce_count_attr[chan]);
470  }
471  put_device(&mci->csrows[i]->dev);
472  device_del(&mci->csrows[i]->dev);
473  }
474 }
475 #endif
476 
477 /*
478  * Per-dimm (or per-rank) devices
479  */
480 
481 #define to_dimm(k) container_of(k, struct dimm_info, dev)
482 
483 /* show/store functions for DIMM Label attributes */
484 static ssize_t dimmdev_location_show(struct device *dev,
485  struct device_attribute *mattr, char *data)
486 {
487  struct dimm_info *dimm = to_dimm(dev);
488 
489  return edac_dimm_info_location(dimm, data, PAGE_SIZE);
490 }
491 
492 static ssize_t dimmdev_label_show(struct device *dev,
493  struct device_attribute *mattr, char *data)
494 {
495  struct dimm_info *dimm = to_dimm(dev);
496 
497  /* if field has not been initialized, there is nothing to send */
498  if (!dimm->label[0])
499  return 0;
500 
501  return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
502 }
503 
504 static ssize_t dimmdev_label_store(struct device *dev,
505  struct device_attribute *mattr,
506  const char *data,
507  size_t count)
508 {
509  struct dimm_info *dimm = to_dimm(dev);
510 
511  ssize_t max_size = 0;
512 
513  max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
514  strncpy(dimm->label, data, max_size);
515  dimm->label[max_size] = '\0';
516 
517  return max_size;
518 }
519 
520 static ssize_t dimmdev_size_show(struct device *dev,
521  struct device_attribute *mattr, char *data)
522 {
523  struct dimm_info *dimm = to_dimm(dev);
524 
525  return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
526 }
527 
528 static ssize_t dimmdev_mem_type_show(struct device *dev,
529  struct device_attribute *mattr, char *data)
530 {
531  struct dimm_info *dimm = to_dimm(dev);
532 
533  return sprintf(data, "%s\n", mem_types[dimm->mtype]);
534 }
535 
536 static ssize_t dimmdev_dev_type_show(struct device *dev,
537  struct device_attribute *mattr, char *data)
538 {
539  struct dimm_info *dimm = to_dimm(dev);
540 
541  return sprintf(data, "%s\n", dev_types[dimm->dtype]);
542 }
543 
544 static ssize_t dimmdev_edac_mode_show(struct device *dev,
545  struct device_attribute *mattr,
546  char *data)
547 {
548  struct dimm_info *dimm = to_dimm(dev);
549 
550  return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
551 }
552 
553 /* dimm/rank attribute files */
554 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
555  dimmdev_label_show, dimmdev_label_store);
556 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
557 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
558 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
559 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
560 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
561 
562 /* attributes of the dimm<id>/rank<id> object */
563 static struct attribute *dimm_attrs[] = {
564  &dev_attr_dimm_label.attr,
565  &dev_attr_dimm_location.attr,
566  &dev_attr_size.attr,
567  &dev_attr_dimm_mem_type.attr,
568  &dev_attr_dimm_dev_type.attr,
569  &dev_attr_dimm_edac_mode.attr,
570  NULL,
571 };
572 
573 static struct attribute_group dimm_attr_grp = {
574  .attrs = dimm_attrs,
575 };
576 
577 static const struct attribute_group *dimm_attr_groups[] = {
578  &dimm_attr_grp,
579  NULL
580 };
581 
582 static void dimm_attr_release(struct device *dev)
583 {
584  struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
585 
586  edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
587  kfree(dimm);
588 }
589 
590 static struct device_type dimm_attr_type = {
591  .groups = dimm_attr_groups,
592  .release = dimm_attr_release,
593 };
594 
595 /* Create a DIMM object under specifed memory controller device */
596 static int edac_create_dimm_object(struct mem_ctl_info *mci,
597  struct dimm_info *dimm,
598  int index)
599 {
600  int err;
601  dimm->mci = mci;
602 
603  dimm->dev.type = &dimm_attr_type;
604  dimm->dev.bus = &mci->bus;
605  device_initialize(&dimm->dev);
606 
607  dimm->dev.parent = &mci->dev;
608  if (mci->mem_is_per_rank)
609  dev_set_name(&dimm->dev, "rank%d", index);
610  else
611  dev_set_name(&dimm->dev, "dimm%d", index);
612  dev_set_drvdata(&dimm->dev, dimm);
613  pm_runtime_forbid(&mci->dev);
614 
615  err = device_add(&dimm->dev);
616 
617  edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
618 
619  return err;
620 }
621 
622 /*
623  * Memory controller device
624  */
625 
626 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
627 
628 static ssize_t mci_reset_counters_store(struct device *dev,
629  struct device_attribute *mattr,
630  const char *data, size_t count)
631 {
632  struct mem_ctl_info *mci = to_mci(dev);
633  int cnt, row, chan, i;
634  mci->ue_mc = 0;
635  mci->ce_mc = 0;
636  mci->ue_noinfo_count = 0;
637  mci->ce_noinfo_count = 0;
638 
639  for (row = 0; row < mci->nr_csrows; row++) {
640  struct csrow_info *ri = mci->csrows[row];
641 
642  ri->ue_count = 0;
643  ri->ce_count = 0;
644 
645  for (chan = 0; chan < ri->nr_channels; chan++)
646  ri->channels[chan]->ce_count = 0;
647  }
648 
649  cnt = 1;
650  for (i = 0; i < mci->n_layers; i++) {
651  cnt *= mci->layers[i].size;
652  memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
653  memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
654  }
655 
656  mci->start_time = jiffies;
657  return count;
658 }
659 
660 /* Memory scrubbing interface:
661  *
662  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
663  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
664  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
665  *
666  * Negative value still means that an error has occurred while setting
667  * the scrub rate.
668  */
669 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
670  struct device_attribute *mattr,
671  const char *data, size_t count)
672 {
673  struct mem_ctl_info *mci = to_mci(dev);
674  unsigned long bandwidth = 0;
675  int new_bw = 0;
676 
677  if (!mci->set_sdram_scrub_rate)
678  return -ENODEV;
679 
680  if (strict_strtoul(data, 10, &bandwidth) < 0)
681  return -EINVAL;
682 
683  new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
684  if (new_bw < 0) {
686  "Error setting scrub rate to: %lu\n", bandwidth);
687  return -EINVAL;
688  }
689 
690  return count;
691 }
692 
693 /*
694  * ->get_sdram_scrub_rate() return value semantics same as above.
695  */
696 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
697  struct device_attribute *mattr,
698  char *data)
699 {
700  struct mem_ctl_info *mci = to_mci(dev);
701  int bandwidth = 0;
702 
703  if (!mci->get_sdram_scrub_rate)
704  return -ENODEV;
705 
706  bandwidth = mci->get_sdram_scrub_rate(mci);
707  if (bandwidth < 0) {
708  edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
709  return bandwidth;
710  }
711 
712  return sprintf(data, "%d\n", bandwidth);
713 }
714 
715 /* default attribute files for the MCI object */
716 static ssize_t mci_ue_count_show(struct device *dev,
717  struct device_attribute *mattr,
718  char *data)
719 {
720  struct mem_ctl_info *mci = to_mci(dev);
721 
722  return sprintf(data, "%d\n", mci->ue_mc);
723 }
724 
725 static ssize_t mci_ce_count_show(struct device *dev,
726  struct device_attribute *mattr,
727  char *data)
728 {
729  struct mem_ctl_info *mci = to_mci(dev);
730 
731  return sprintf(data, "%d\n", mci->ce_mc);
732 }
733 
734 static ssize_t mci_ce_noinfo_show(struct device *dev,
735  struct device_attribute *mattr,
736  char *data)
737 {
738  struct mem_ctl_info *mci = to_mci(dev);
739 
740  return sprintf(data, "%d\n", mci->ce_noinfo_count);
741 }
742 
743 static ssize_t mci_ue_noinfo_show(struct device *dev,
744  struct device_attribute *mattr,
745  char *data)
746 {
747  struct mem_ctl_info *mci = to_mci(dev);
748 
749  return sprintf(data, "%d\n", mci->ue_noinfo_count);
750 }
751 
752 static ssize_t mci_seconds_show(struct device *dev,
753  struct device_attribute *mattr,
754  char *data)
755 {
756  struct mem_ctl_info *mci = to_mci(dev);
757 
758  return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
759 }
760 
761 static ssize_t mci_ctl_name_show(struct device *dev,
762  struct device_attribute *mattr,
763  char *data)
764 {
765  struct mem_ctl_info *mci = to_mci(dev);
766 
767  return sprintf(data, "%s\n", mci->ctl_name);
768 }
769 
770 static ssize_t mci_size_mb_show(struct device *dev,
771  struct device_attribute *mattr,
772  char *data)
773 {
774  struct mem_ctl_info *mci = to_mci(dev);
775  int total_pages = 0, csrow_idx, j;
776 
777  for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
778  struct csrow_info *csrow = mci->csrows[csrow_idx];
779 
780  for (j = 0; j < csrow->nr_channels; j++) {
781  struct dimm_info *dimm = csrow->channels[j]->dimm;
782 
783  total_pages += dimm->nr_pages;
784  }
785  }
786 
787  return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
788 }
789 
790 static ssize_t mci_max_location_show(struct device *dev,
791  struct device_attribute *mattr,
792  char *data)
793 {
794  struct mem_ctl_info *mci = to_mci(dev);
795  int i;
796  char *p = data;
797 
798  for (i = 0; i < mci->n_layers; i++) {
799  p += sprintf(p, "%s %d ",
800  edac_layer_name[mci->layers[i].type],
801  mci->layers[i].size - 1);
802  }
803 
804  return p - data;
805 }
806 
807 #ifdef CONFIG_EDAC_DEBUG
808 static ssize_t edac_fake_inject_write(struct file *file,
809  const char __user *data,
810  size_t count, loff_t *ppos)
811 {
812  struct device *dev = file->private_data;
813  struct mem_ctl_info *mci = to_mci(dev);
814  static enum hw_event_mc_err_type type;
815  u16 errcount = mci->fake_inject_count;
816 
817  if (!errcount)
818  errcount = 1;
819 
820  type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
822 
824  "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
825  errcount,
826  (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
827  errcount > 1 ? "s" : "",
828  mci->fake_inject_layer[0],
829  mci->fake_inject_layer[1],
830  mci->fake_inject_layer[2]
831  );
832  edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
833  mci->fake_inject_layer[0],
834  mci->fake_inject_layer[1],
835  mci->fake_inject_layer[2],
836  "FAKE ERROR", "for EDAC testing only");
837 
838  return count;
839 }
840 
841 static int debugfs_open(struct inode *inode, struct file *file)
842 {
843  file->private_data = inode->i_private;
844  return 0;
845 }
846 
847 static const struct file_operations debug_fake_inject_fops = {
848  .open = debugfs_open,
849  .write = edac_fake_inject_write,
850  .llseek = generic_file_llseek,
851 };
852 #endif
853 
854 /* default Control file */
855 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
856 
857 /* default Attribute files */
858 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
859 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
860 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
861 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
862 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
863 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
864 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
865 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
866 
867 /* memory scrubber attribute file */
868 DEVICE_ATTR(sdram_scrub_rate, S_IRUGO | S_IWUSR, mci_sdram_scrub_rate_show,
869  mci_sdram_scrub_rate_store);
870 
871 static struct attribute *mci_attrs[] = {
872  &dev_attr_reset_counters.attr,
873  &dev_attr_mc_name.attr,
874  &dev_attr_size_mb.attr,
875  &dev_attr_seconds_since_reset.attr,
876  &dev_attr_ue_noinfo_count.attr,
877  &dev_attr_ce_noinfo_count.attr,
878  &dev_attr_ue_count.attr,
879  &dev_attr_ce_count.attr,
880  &dev_attr_sdram_scrub_rate.attr,
881  &dev_attr_max_location.attr,
882  NULL
883 };
884 
885 static struct attribute_group mci_attr_grp = {
886  .attrs = mci_attrs,
887 };
888 
889 static const struct attribute_group *mci_attr_groups[] = {
890  &mci_attr_grp,
891  NULL
892 };
893 
894 static void mci_attr_release(struct device *dev)
895 {
896  struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
897 
898  edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
899  kfree(mci);
900 }
901 
902 static struct device_type mci_attr_type = {
903  .groups = mci_attr_groups,
904  .release = mci_attr_release,
905 };
906 
907 #ifdef CONFIG_EDAC_DEBUG
908 static struct dentry *edac_debugfs;
909 
910 int __init edac_debugfs_init(void)
911 {
912  edac_debugfs = debugfs_create_dir("edac", NULL);
913  if (IS_ERR(edac_debugfs)) {
914  edac_debugfs = NULL;
915  return -ENOMEM;
916  }
917  return 0;
918 }
919 
920 void __exit edac_debugfs_exit(void)
921 {
922  debugfs_remove(edac_debugfs);
923 }
924 
925 int edac_create_debug_nodes(struct mem_ctl_info *mci)
926 {
927  struct dentry *d, *parent;
928  char name[80];
929  int i;
930 
931  if (!edac_debugfs)
932  return -ENODEV;
933 
934  d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
935  if (!d)
936  return -ENOMEM;
937  parent = d;
938 
939  for (i = 0; i < mci->n_layers; i++) {
940  sprintf(name, "fake_inject_%s",
941  edac_layer_name[mci->layers[i].type]);
942  d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
943  &mci->fake_inject_layer[i]);
944  if (!d)
945  goto nomem;
946  }
947 
948  d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
949  &mci->fake_inject_ue);
950  if (!d)
951  goto nomem;
952 
953  d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
954  &mci->fake_inject_count);
955  if (!d)
956  goto nomem;
957 
958  d = debugfs_create_file("fake_inject", S_IWUSR, parent,
959  &mci->dev,
960  &debug_fake_inject_fops);
961  if (!d)
962  goto nomem;
963 
964  mci->debugfs = parent;
965  return 0;
966 nomem:
967  debugfs_remove(mci->debugfs);
968  return -ENOMEM;
969 }
970 #endif
971 
972 /*
973  * Create a new Memory Controller kobject instance,
974  * mc<id> under the 'mc' directory
975  *
976  * Return:
977  * 0 Success
978  * !0 Failure
979  */
981 {
982  int i, err;
983 
984  /*
985  * The memory controller needs its own bus, in order to avoid
986  * namespace conflicts at /sys/bus/edac.
987  */
988  mci->bus.name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
989  if (!mci->bus.name)
990  return -ENOMEM;
991  edac_dbg(0, "creating bus %s\n", mci->bus.name);
992  err = bus_register(&mci->bus);
993  if (err < 0)
994  return err;
995 
996  /* get the /sys/devices/system/edac subsys reference */
997  mci->dev.type = &mci_attr_type;
998  device_initialize(&mci->dev);
999 
1000  mci->dev.parent = mci_pdev;
1001  mci->dev.bus = &mci->bus;
1002  dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
1003  dev_set_drvdata(&mci->dev, mci);
1004  pm_runtime_forbid(&mci->dev);
1005 
1006  edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1007  err = device_add(&mci->dev);
1008  if (err < 0) {
1009  bus_unregister(&mci->bus);
1010  kfree(mci->bus.name);
1011  return err;
1012  }
1013 
1014  /*
1015  * Create the dimm/rank devices
1016  */
1017  for (i = 0; i < mci->tot_dimms; i++) {
1018  struct dimm_info *dimm = mci->dimms[i];
1019  /* Only expose populated DIMMs */
1020  if (dimm->nr_pages == 0)
1021  continue;
1022 #ifdef CONFIG_EDAC_DEBUG
1023  edac_dbg(1, "creating dimm%d, located at ", i);
1024  if (edac_debug_level >= 1) {
1025  int lay;
1026  for (lay = 0; lay < mci->n_layers; lay++)
1027  printk(KERN_CONT "%s %d ",
1028  edac_layer_name[mci->layers[lay].type],
1029  dimm->location[lay]);
1030  printk(KERN_CONT "\n");
1031  }
1032 #endif
1033  err = edac_create_dimm_object(mci, dimm, i);
1034  if (err) {
1035  edac_dbg(1, "failure: create dimm %d obj\n", i);
1036  goto fail;
1037  }
1038  }
1039 
1040 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1041  err = edac_create_csrow_objects(mci);
1042  if (err < 0)
1043  goto fail;
1044 #endif
1045 
1046 #ifdef CONFIG_EDAC_DEBUG
1047  edac_create_debug_nodes(mci);
1048 #endif
1049  return 0;
1050 
1051 fail:
1052  for (i--; i >= 0; i--) {
1053  struct dimm_info *dimm = mci->dimms[i];
1054  if (dimm->nr_pages == 0)
1055  continue;
1056  put_device(&dimm->dev);
1057  device_del(&dimm->dev);
1058  }
1059  put_device(&mci->dev);
1060  device_del(&mci->dev);
1061  bus_unregister(&mci->bus);
1062  kfree(mci->bus.name);
1063  return err;
1064 }
1065 
1066 /*
1067  * remove a Memory Controller instance
1068  */
1070 {
1071  int i;
1072 
1073  edac_dbg(0, "\n");
1074 
1075 #ifdef CONFIG_EDAC_DEBUG
1076  debugfs_remove(mci->debugfs);
1077 #endif
1078 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1079  edac_delete_csrow_objects(mci);
1080 #endif
1081 
1082  for (i = 0; i < mci->tot_dimms; i++) {
1083  struct dimm_info *dimm = mci->dimms[i];
1084  if (dimm->nr_pages == 0)
1085  continue;
1086  edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1087  put_device(&dimm->dev);
1088  device_del(&dimm->dev);
1089  }
1090 }
1091 
1093 {
1094  edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1095  put_device(&mci->dev);
1096  device_del(&mci->dev);
1097  bus_unregister(&mci->bus);
1098  kfree(mci->bus.name);
1099 }
1100 
1101 static void mc_attr_release(struct device *dev)
1102 {
1103  /*
1104  * There's no container structure here, as this is just the mci
1105  * parent device, used to create the /sys/devices/mc sysfs node.
1106  * So, there are no attributes on it.
1107  */
1108  edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1109  kfree(dev);
1110 }
1111 
1112 static struct device_type mc_attr_type = {
1113  .release = mc_attr_release,
1114 };
1115 /*
1116  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1117  */
1119 {
1120  struct bus_type *edac_subsys;
1121  int err;
1122 
1123  /* get the /sys/devices/system/edac subsys reference */
1124  edac_subsys = edac_get_sysfs_subsys();
1125  if (edac_subsys == NULL) {
1126  edac_dbg(1, "no edac_subsys\n");
1127  return -EINVAL;
1128  }
1129 
1130  mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1131 
1132  mci_pdev->bus = edac_subsys;
1133  mci_pdev->type = &mc_attr_type;
1134  device_initialize(mci_pdev);
1135  dev_set_name(mci_pdev, "mc");
1136 
1137  err = device_add(mci_pdev);
1138  if (err < 0)
1139  return err;
1140 
1141  edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1142 
1143  return 0;
1144 }
1145 
1147 {
1148  put_device(mci_pdev);
1149  device_del(mci_pdev);
1151 }