Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
eeh.h
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation.
3  * Copyright 2001-2012 IBM Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  */
19 
20 #ifndef _POWERPC_EEH_H
21 #define _POWERPC_EEH_H
22 #ifdef __KERNEL__
23 
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/string.h>
27 
28 struct pci_dev;
29 struct pci_bus;
30 struct device_node;
31 
32 #ifdef CONFIG_EEH
33 
34 /*
35  * The struct is used to trace PE related EEH functionality.
36  * In theory, there will have one instance of the struct to
37  * be created against particular PE. In nature, PEs corelate
38  * to each other. the struct has to reflect that hierarchy in
39  * order to easily pick up those affected PEs when one particular
40  * PE has EEH errors.
41  *
42  * Also, one particular PE might be composed of PCI device, PCI
43  * bus and its subordinate components. The struct also need ship
44  * the information. Further more, one particular PE is only meaingful
45  * in the corresponding PHB. Therefore, the root PEs should be created
46  * against existing PHBs in on-to-one fashion.
47  */
48 #define EEH_PE_INVALID (1 << 0) /* Invalid */
49 #define EEH_PE_PHB (1 << 1) /* PHB PE */
50 #define EEH_PE_DEVICE (1 << 2) /* Device PE */
51 #define EEH_PE_BUS (1 << 3) /* Bus PE */
52 
53 #define EEH_PE_ISOLATED (1 << 0) /* Isolated PE */
54 #define EEH_PE_RECOVERING (1 << 1) /* Recovering PE */
55 
56 struct eeh_pe {
57  int type; /* PE type: PHB/Bus/Device */
58  int state; /* PE EEH dependent mode */
59  int config_addr; /* Traditional PCI address */
60  int addr; /* PE configuration address */
61  struct pci_controller *phb; /* Associated PHB */
62  int check_count; /* Times of ignored error */
63  int freeze_count; /* Times of froze up */
64  int false_positives; /* Times of reported #ff's */
65  struct eeh_pe *parent; /* Parent PE */
66  struct list_head child_list; /* Link PE to the child list */
67  struct list_head edevs; /* Link list of EEH devices */
68  struct list_head child; /* Child PEs */
69 };
70 
71 #define eeh_pe_for_each_dev(pe, edev) \
72  list_for_each_entry(edev, &pe->edevs, list)
73 
74 /*
75  * The struct is used to trace EEH state for the associated
76  * PCI device node or PCI device. In future, it might
77  * represent PE as well so that the EEH device to form
78  * another tree except the currently existing tree of PCI
79  * buses and PCI devices
80  */
81 #define EEH_DEV_IRQ_DISABLED (1<<0) /* Interrupt disabled */
82 
83 struct eeh_dev {
84  int mode; /* EEH mode */
85  int class_code; /* Class code of the device */
86  int config_addr; /* Config address */
87  int pe_config_addr; /* PE config address */
88  u32 config_space[16]; /* Saved PCI config space */
89  struct eeh_pe *pe; /* Associated PE */
90  struct list_head list; /* Form link list in the PE */
91  struct pci_controller *phb; /* Associated PHB */
92  struct device_node *dn; /* Associated device node */
93  struct pci_dev *pdev; /* Associated PCI device */
94 };
95 
96 static inline struct device_node *eeh_dev_to_of_node(struct eeh_dev *edev)
97 {
98  return edev->dn;
99 }
100 
101 static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev)
102 {
103  return edev->pdev;
104 }
105 
106 /*
107  * The struct is used to trace the registered EEH operation
108  * callback functions. Actually, those operation callback
109  * functions are heavily platform dependent. That means the
110  * platform should register its own EEH operation callback
111  * functions before any EEH further operations.
112  */
113 #define EEH_OPT_DISABLE 0 /* EEH disable */
114 #define EEH_OPT_ENABLE 1 /* EEH enable */
115 #define EEH_OPT_THAW_MMIO 2 /* MMIO enable */
116 #define EEH_OPT_THAW_DMA 3 /* DMA enable */
117 #define EEH_STATE_UNAVAILABLE (1 << 0) /* State unavailable */
118 #define EEH_STATE_NOT_SUPPORT (1 << 1) /* EEH not supported */
119 #define EEH_STATE_RESET_ACTIVE (1 << 2) /* Active reset */
120 #define EEH_STATE_MMIO_ACTIVE (1 << 3) /* Active MMIO */
121 #define EEH_STATE_DMA_ACTIVE (1 << 4) /* Active DMA */
122 #define EEH_STATE_MMIO_ENABLED (1 << 5) /* MMIO enabled */
123 #define EEH_STATE_DMA_ENABLED (1 << 6) /* DMA enabled */
124 #define EEH_RESET_DEACTIVATE 0 /* Deactivate the PE reset */
125 #define EEH_RESET_HOT 1 /* Hot reset */
126 #define EEH_RESET_FUNDAMENTAL 3 /* Fundamental reset */
127 #define EEH_LOG_TEMP 1 /* EEH temporary error log */
128 #define EEH_LOG_PERM 2 /* EEH permanent error log */
129 
130 struct eeh_ops {
131  char *name;
132  int (*init)(void);
133  void* (*of_probe)(struct device_node *dn, void *flag);
134  void* (*dev_probe)(struct pci_dev *dev, void *flag);
135  int (*set_option)(struct eeh_pe *pe, int option);
136  int (*get_pe_addr)(struct eeh_pe *pe);
137  int (*get_state)(struct eeh_pe *pe, int *state);
138  int (*reset)(struct eeh_pe *pe, int option);
139  int (*wait_state)(struct eeh_pe *pe, int max_wait);
140  int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len);
141  int (*configure_bridge)(struct eeh_pe *pe);
142  int (*read_config)(struct device_node *dn, int where, int size, u32 *val);
143  int (*write_config)(struct device_node *dn, int where, int size, u32 val);
144 };
145 
146 extern struct eeh_ops *eeh_ops;
147 extern int eeh_subsystem_enabled;
148 extern struct mutex eeh_mutex;
149 extern int eeh_probe_mode;
150 
151 #define EEH_PROBE_MODE_DEV (1<<0) /* From PCI device */
152 #define EEH_PROBE_MODE_DEVTREE (1<<1) /* From device tree */
153 
154 static inline void eeh_probe_mode_set(int flag)
155 {
157 }
158 
159 static inline int eeh_probe_mode_devtree(void)
160 {
161  return (eeh_probe_mode == EEH_PROBE_MODE_DEVTREE);
162 }
163 
164 static inline int eeh_probe_mode_dev(void)
165 {
166  return (eeh_probe_mode == EEH_PROBE_MODE_DEV);
167 }
168 
169 static inline void eeh_lock(void)
170 {
171  mutex_lock(&eeh_mutex);
172 }
173 
174 static inline void eeh_unlock(void)
175 {
176  mutex_unlock(&eeh_mutex);
177 }
178 
179 /*
180  * Max number of EEH freezes allowed before we consider the device
181  * to be permanently disabled.
182  */
183 #define EEH_MAX_ALLOWED_FREEZES 5
184 
185 typedef void *(*eeh_traverse_func)(void *data, void *flag);
187 int eeh_add_to_parent_pe(struct eeh_dev *edev);
188 int eeh_rmv_from_parent_pe(struct eeh_dev *edev, int purge_pe);
189 void *eeh_pe_dev_traverse(struct eeh_pe *root,
190  eeh_traverse_func fn, void *flag);
191 void eeh_pe_restore_bars(struct eeh_pe *pe);
192 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe);
193 
194 void * __devinit eeh_dev_init(struct device_node *dn, void *data);
196 int __init eeh_ops_register(struct eeh_ops *ops);
197 int __exit eeh_ops_unregister(const char *name);
198 unsigned long eeh_check_failure(const volatile void __iomem *token,
199  unsigned long val);
200 int eeh_dev_check_failure(struct eeh_dev *edev);
201 void __init eeh_addr_cache_build(void);
203 void eeh_add_device_tree_late(struct pci_bus *);
204 void eeh_remove_bus_device(struct pci_dev *, int);
205 
212 #define EEH_POSSIBLE_ERROR(val, type) ((val) == (type)~0 && eeh_subsystem_enabled)
213 
214 /*
215  * Reads from a device which has been isolated by EEH will return
216  * all 1s. This macro gives an all-1s value of the given size (in
217  * bytes: 1, 2, or 4) for comparing with the result of a read.
218  */
219 #define EEH_IO_ERROR_VALUE(size) (~0U >> ((4 - (size)) * 8))
220 
221 #else /* !CONFIG_EEH */
222 
223 static inline void *eeh_dev_init(struct device_node *dn, void *data)
224 {
225  return NULL;
226 }
227 
228 static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { }
229 
230 static inline unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
231 {
232  return val;
233 }
234 
235 #define eeh_dev_check_failure(x) (0)
236 
237 static inline void eeh_addr_cache_build(void) { }
238 
239 static inline void eeh_add_device_tree_early(struct device_node *dn) { }
240 
241 static inline void eeh_add_device_tree_late(struct pci_bus *bus) { }
242 
243 static inline void eeh_remove_bus_device(struct pci_dev *dev, int purge_pe) { }
244 
245 static inline void eeh_lock(void) { }
246 static inline void eeh_unlock(void) { }
247 
248 #define EEH_POSSIBLE_ERROR(val, type) (0)
249 #define EEH_IO_ERROR_VALUE(size) (-1UL)
250 #endif /* CONFIG_EEH */
251 
252 #ifdef CONFIG_PPC64
253 /*
254  * MMIO read/write operations with EEH support.
255  */
256 static inline u8 eeh_readb(const volatile void __iomem *addr)
257 {
258  u8 val = in_8(addr);
259  if (EEH_POSSIBLE_ERROR(val, u8))
260  return eeh_check_failure(addr, val);
261  return val;
262 }
263 
264 static inline u16 eeh_readw(const volatile void __iomem *addr)
265 {
266  u16 val = in_le16(addr);
267  if (EEH_POSSIBLE_ERROR(val, u16))
268  return eeh_check_failure(addr, val);
269  return val;
270 }
271 
272 static inline u32 eeh_readl(const volatile void __iomem *addr)
273 {
274  u32 val = in_le32(addr);
275  if (EEH_POSSIBLE_ERROR(val, u32))
276  return eeh_check_failure(addr, val);
277  return val;
278 }
279 
280 static inline u64 eeh_readq(const volatile void __iomem *addr)
281 {
282  u64 val = in_le64(addr);
283  if (EEH_POSSIBLE_ERROR(val, u64))
284  return eeh_check_failure(addr, val);
285  return val;
286 }
287 
288 static inline u16 eeh_readw_be(const volatile void __iomem *addr)
289 {
290  u16 val = in_be16(addr);
291  if (EEH_POSSIBLE_ERROR(val, u16))
292  return eeh_check_failure(addr, val);
293  return val;
294 }
295 
296 static inline u32 eeh_readl_be(const volatile void __iomem *addr)
297 {
298  u32 val = in_be32(addr);
299  if (EEH_POSSIBLE_ERROR(val, u32))
300  return eeh_check_failure(addr, val);
301  return val;
302 }
303 
304 static inline u64 eeh_readq_be(const volatile void __iomem *addr)
305 {
306  u64 val = in_be64(addr);
307  if (EEH_POSSIBLE_ERROR(val, u64))
308  return eeh_check_failure(addr, val);
309  return val;
310 }
311 
312 static inline void eeh_memcpy_fromio(void *dest, const
313  volatile void __iomem *src,
314  unsigned long n)
315 {
316  _memcpy_fromio(dest, src, n);
317 
318  /* Look for ffff's here at dest[n]. Assume that at least 4 bytes
319  * were copied. Check all four bytes.
320  */
321  if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32))
322  eeh_check_failure(src, *((u32 *)(dest + n - 4)));
323 }
324 
325 /* in-string eeh macros */
326 static inline void eeh_readsb(const volatile void __iomem *addr, void * buf,
327  int ns)
328 {
329  _insb(addr, buf, ns);
330  if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
331  eeh_check_failure(addr, *(u8*)buf);
332 }
333 
334 static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
335  int ns)
336 {
337  _insw(addr, buf, ns);
338  if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
339  eeh_check_failure(addr, *(u16*)buf);
340 }
341 
342 static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
343  int nl)
344 {
345  _insl(addr, buf, nl);
346  if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
347  eeh_check_failure(addr, *(u32*)buf);
348 }
349 
350 #endif /* CONFIG_PPC64 */
351 #endif /* __KERNEL__ */
352 #endif /* _POWERPC_EEH_H */